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Abstract—With increasing volumes of scientific data, a scalable
and parallel computing framework is required for scientific
analysis in computer simulations and experiments. Scientific data
are commonly generated in multi-dimensional arrays, and the
array data model is appropriate to store them for analysis,
including for data mining and arithmetic computation. In this
paper, we introduce an array processing system called Spangle.
It is implemented on top of Apache Spark, a popular map-
reduce framework for complex computation workloads. To sup-
port array data computation, we extended Resilient Distributed
Dataset (RDD) based on the array data model named ArrayRDD.
ArrayRDD is an inherently parallel data structure that provides
fault-tolerance. In addition, by adopting the array data model,
Spangle provides an interface for expressing machine learning
algorithms, which heavily rely on linear algebra. We tailored two
popular algorithms, PageRank and Stochastic Gradient Descent,
for large-scale datasets in Spangle.

I. INTRODUCTION

With the advancement of data collection and storage tech-
nologies, a broad range of fields, such as climatology, geology,
and astronomy, produce large-scale arrays. For instance, the
Large Synoptic Survey Telescope (LSST), built to survey the
night-time sky, collects 60PB of images over ten years. In
these fields, the complex analysis of scientific raster data plays
an important role in understanding scientific phenomena. As
the volume of such data increases, the analysis becomes heavy
work that entails a long running time, which requires a scalable
and parallel framework such as Apache Spark for the desirable
performance and productivity.

Moreover, the growing demand for large-scale machine
learning has been changing the landscape of data analysis.
Many machine learning algorithms heavily rely on algebraic
computations (e.g., matrix calculations for logistic regression).
There is a strong need for algorithms dealing with large-scale
matrices that do not fit into a single machine memory. A
large machine learning task may have to be distributed and
processed in parallel to reduce the training times. It is crucial
to provide a scalable and efficient programming model that
domain scientists can easily adopt for their data processing
needs.

We introduce Spangle, an array processing system imple-
mented on top of Apache Spark. Spangle extends Resilient
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Distributed Dataset (RDD) for large-scale array processing.
The parallel data structure, called ArrayRDD, is based on
the array data model and inherently provides fault tolerance.
ArrayRDD can represent multi-dimensional matrices, arrays
as well as spatio-temporal data.

Spangle provides declarative interfaces to manipulate arrays.
It allows us to organize tasks into a pipeline. Spangle manages
sparse arrays containing null values or invalid cells with bit-
masks. The bitmask is a series of bit vectors and provides non-
trivial benefits. Without having to store invalid cells explicitly,
it can compress an array thereby enabling to load larger ones
into memory. Besides, it can reduce the computational volume
by bypassing the invalid cells.

We can leverage not only the array indexing capability
for performance but also a range of array processing APIs
for programmability. Spangle can support processing large-
scale raster data or large training data for machine learning
algorithms. To evaluate the effectiveness of Spangle, we have
customized and optimized the two popular machine learning
algorithms, PageRank and stochastic gradient descent (SGD),
for Spangle. Spangle achieves better performance than existing
array processing systems. Overall, we make the following
contributions.

• We have implemented an array processing system called
Spangle for large-scale raster data analytics and machine
learning.

• For sparse arrays, Spangle employs bitmasks in a few
different modes so that it can compress large arrays.

• We have customized two machine learning algorithms,
PageRank and SGD, for Spangle. It is demonstrated
from these tailored algorithms that Spangle can facilitate
complex analytics effectively.

This paper is organized as follows. We describe the back-
ground information in Section II. In Section III, we present
our novel system, Spangle, and its architecture. Then, we
describe the bitmask which is a Spangle component, and how it
manages chunks and processes arrays in Section IV. Section V
shows programming interfaces in Spangle. In Section VI,
we optimize two machine learning algorithms for Spangle,
and Section VII shows the performance of Spangle. Last,
Section VIII reviews related work, and Section IX concludes
this paper.
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II. BACKGROUND

In this section, we present the background of the array
model and discuss null values in raster data. We then provide
an overview of Apache Spark.

A. Array Data Model

An array, a collection of homogeneous elements and totally
ordered, is a fundamental data model. It is composed of
consecutive elements, named cells. A cell can have multiple
values, mapped into the same array index. For instance, a
sensor can produce multiple values in a particular area (e.g.,
temperature, precipitation, and pressure in climate data). This
model is widely used to process multi-dimensional data, such
as geospatial data, and to implement scientific and machine
learning algorithms.

The raster data, generated by scientific observation and
computer simulation, highly employ the array data model.
These data have dimensions discretized regularly over time and
space. Remote sensing, for example, processes spatial and tem-
poral information and generates images. Values in the images
are enumerated along with coordinates (e.g., longitude and
latitude), naturally represented in multi-dimensional arrays.

Another application of this model is to express linear
algebra. In fact, many scientific algorithms are represented as
matrices. For instance, two- or three-dimensional Fast Fourier
Transforms are widely used in the field of image processing.
Machine learning algorithms, such as matrix factorization and
principal component analysis, are also key concerns with linear
transformations. These are tightly related to vector spaces or
specific matrix operations.

B. Null Value in Raster Data

The real array datasets contain null values, also called no-
data or missing data, when data are lost or dropped. It repre-
sents the invalid state of data. This case occurs in, for example,
satellite sensors observing objects which are often missed
or unknown [1]. The objects in the universe such as stars
or galaxies are sparsely distributed. That is, most astronomy
image data are filled with a few empty regions [2]. Likewise,
in monitoring shipping vessels, data around the coastline are
empty because they congregate near major ports [3].

Each array-based system [4]–[7] adopts different methods
to describe null values. The values can be encoded as NaNs,
supported in most languages such as C++ and Java. The
NaN is a straightforward representation of a null value. A
mathematical operation (e.g., addition) with a null value is
not defined, which is the same as NaN. That is, the result
of arithmetic operation is null (e.g., 1 + =D;; = =D;;), which
is the same as that of NaN (e.g., 1 + #0# = #0#). It is
unnecessary to define a character for a null value. However,
it can have a limitation because the value is not specified for
all general types, such as Int and Long. Another method to
represent a null value is to use specific values such as the
minimum or maximum value of a primitive type (e.g., int max
or float min). However, this could be cumbersome because a
cell can have any real value. If a value is int max, not a null

value, a system cannot determine whether the value is a real
value or null value.

Alternatively, the auxiliary data structure, bitmask, can be
adopted to represent null values. Each bit vector in a bitmask
can be either one or zero. If the data are a real value, a bit
vector is set to one. Otherwise, the bit vector is set to zero.
While the bitmask requires additional space, it is independent
of any data type. A system can use all values and express
the data status with the minimum size (i.e., one bit per cell),
compared with the above methods.

While a system processes raster data, values can be trans-
lated as null values. Suppose that scientists only focus on
chlorophyll [8], where values are greater than a specific
threshold below the sea surface. These negligible cells are
considered to be invalid. Spangle treats a specific cell that
is not of interest as a null value.

C. Overview of Apache Spark

Apache Spark [9] is a general-purpose framework for large-
scale data processing with APIs in Scala, Java, and Python.
More recently, a number of high-level APIs have been de-
veloped based on Spark. With built-in modules for streaming
data analysis [10], SQL [11], machine learning [12], and graph
processing [13], Spark enables advanced in-memory big data
processing and analytics in many fields such as finance and
e-commerce industries.

For in-memory cluster computing, Spark introduced an effi-
cient abstraction called Resilient Distributed Datasets (RDDs)
[14]. Each of them is a distributed collection of objects par-
titioned over a cluster. To manipulate RDDs, Spark provides
a functional programming interface with two types of RDD
operations, namely, transformation (e.g., map and filter)
and action (e.g., reduce and collect).

Spark processes data through the combination of stages
which are a series of RDD operations. Each stage is lazily
evaluated. In other words, transformations are not executed
until the actions are triggered. It enables Spark to avoid ex-
ecuting unnecessary transformations. RDDs are fault-tolerant
with a lineage graph which is information about how they
were derived from other RDDs. Using this graph, Spark can
reconstruct RDDs after a failure. In addition, they explicitly
persist in memory or on disk to accelerate data access and
reuse.

III. ARCHITECTURE OF SPANGLE

In this section, we present a novel system called Spangle.
It is designed to process and analyze large-scale arrays such
as raster data and images, as well as to compute large
matrices. We introduce its architecture and then describe each
component.

A. System Overview

Spangle is an in-memory distributed processing system that
adopts an array data model, built on top of Apache Spark.
It supports array operations to enable scientific or business
analytics over multi-dimensional datasets. The architecture of
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Fig. 1: The architecture of Spangle

Spangle is described in Figure 1. It is composed of two main
components: ArrayRDD and its metadata. The ArrayRDD, a
dataset of Spangle, is an extension of the RDD and follows
its properties, such as fault-tolerance and lazy evaluation. The
other component is metadata. It is a description of an array
and presents array specifications, such as the starting point and
data types of attributes. Using this information, Spangle can
manage arrays as physical and logical layouts, respectively.

Spangle is able to process arrays that can have two features:
an irregular form and multiple attributes. The ragged data
(irregular form) are usually sparse, even skewed, and the
majority of them are empty cells (no-data) in scientific data,
described in Section II-B. To represent null values, we employ
bitmask, coupled with a payload in a chunk. A chunk clusters
adjacent cells and preserves the data locality, which can easily
access adjacent cells together. Without storing null values,
Spangle can reduce the size of arrays, described in detail in
Section IV-A.

Moreover, Spangle can manage multi-attribute arrays. While
scientific data may have a number of attributes, most appli-
cations span the processing time within a few of them [15].
Considering this characteristic, we adopt a column-store man-
ner to efficiently manage attributes by mapping an attribute
into an ArrayRDD. The benefits of a column-store are to
reduce the data size by compression and improve the cache hit
ratio [16], suitable for in-memory processing systems. Even
for machine learning, a column-store manner achieves high
performance [17].

In Spangle, each cell can be identified by its array index.
Spangle manages arrays by ArrayRDD, which consists of
chunks, and uses a special ArrayRDD, named MaskRDD. In
particular, ArrayRDD inherits %08A'�� (key-value RDD),
where each record is composed of a key-value pair. To create
ArrayRDD, Spangle first ingests data (e.g., CSV and NetCDF)
and assigns a unique ChunkID to each cell and groups cells
with the same key. Afterward, cells are mapped into the pay-
load, and the bitmask is set. These are performed as pipelining.
When an operation, such as matrix multiplication, incurring
data shuffling, or join is executed, Spangle re-distributes each
of them and processes arrays in parallel based on chunks. The
details are described below.

1) Chunk: An ArrayRDD is composed of non-overlapping
blocks of an array, 2ℎD=:s. An array is partitioned into
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Fig. 2: The ArrayRDD and chunk layout

chunks and distributed across multiple workers (i.e., executors
in Spark). A chunk contains geographically contiguous data,
where co-located cells are clustered to ensure data locality.
This is essential in the coordinate system because adjacent data
are usually accessed and processed together. In a distributed
environment, it reduces the network communication cost and
brings out cache effects. However, several operators require
data shuffling, which incurs significant overhead, such as in
image processing. To minimize this overhead, a chunk can
have extra cells by a given number in boundaries along each
dimension, named overlap [18] which Spangle employs. It
is useful when workers require adjacent cells in a chunk
boundary (e.g., blurring images). This technique can avoid data
exchanges, which reduces the network overhead.

B. ArrayRDD

A chunk consists of two components, a payload and a
bitmask, as shown in Figure 2. The payload is a collection
of actual values, and the bitmask indicates their validity. The
payload is physically stored in a one-dimensional array. In
a distributed environment, each chunk must have a unique
identifier to access cells. Specifically, ArrayRDD manages
each record as a pair of a chunk and its ID. The ID is a single
value, which stands for multiple values (e.g., coordinates).
Compared with multi-value representation, the single-value
representation supports any arrays without concern for the
number of dimensions and reduces the key length and lookup
cost. Spangle assigns a chunk ID to every chunk, unless all
cells in a chunk are empty. Consequently, Spangle does not
create empty chunks, which also reduces the data size in
memory.

1) MaskRDD: The MaskRDD is a hidden attribute that is
internally used. It stores the global positions of null values and
thus provides a global view for visible attributes. It is essential
to achieve better performance when the number of attributes
is greater than one. For instance, a cell filtered out in one
attribute by the Filter operator, described in Section V, must
be excluded from the other attributes. Spangle maintains this
consistency in every operation; however, it is quite expensive.
MaskRDD can reduce this cost, similar to the Spark strategy,
lazy-evaluation. That is, every operation transforms only a
MaskRDD, and Spangle evaluates all ArrayRDDs on-demand
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from MaskRDD. This benefit in terms of the performance is
described in Section VII-B.

C. Metadata and Mapper

To manage arrays, Spangle stores metadata, such as the
starting and ending points of arrays, the interval of chunks, and
data types. With this metadata, the mapper virtually translates
a logical layout to the physical layout, and vice versa, as
shown in Figure 2. It derives coordinates from a chunk ID,
and Algorithm 1 shows how it works. This algorithm is used
to create chunks and to retrieve cells within a specific range.
We use this idea to optimize the performance by applying it
to a mathematical operation in Section VI-C.

Algorithm 1: Computing a Chunk ID from Coordi-
nates

input : metadata <C, coordinates ?>B
output: Chunk ID
chunkID = 0
length = 1
for i=0. . .mt.getNumDim-1 do

chunkID += (pos(i) / mt.getChunkSize(i)) * length
length = length * math.ceil(mt.getArraySize(i) /
mt.getChunkSize(i))

end
chunkID

IV. BITMASK

This section introduces three different chunk management
modes and describes how to compress arrays and access them
for each mode in detail. Given the data distribution, a chunk
is managed in three distinct modes: Dense, Sparse, and Super-
Sparse. Under these modes, cells can be accessed in different
approaches.

Assuming that the time complexity of the one-bit count for
a word is constant, the computation for random access in n-
words takes O(n). If an operation scans all elements in a chunk,
then it takes O(=2) time. To reduce the long-running time, we
optimize it by distinguishing two access patterns, described in
Section IV-B.

A. Chunk Management

As the density of an array, Spangle manages chunks in three
different modes: dense, sparse, and super-sparse, described
in Figure 3. It is not necessary to compress a dense array,
whereas a sparse or super-sparse array needs to be compressed,
which physically removes invalid cells and reduces the size
of an array. In matrix operations, zero is treated as invalid.
Similar to managing raster data, compression methods can
be applied to a sparse or super-sparse matrix. Especially, in
matrix operations such as matrix multiplication, the data size
impacts on the network overhead which is the major factor
of the performance. In addition, the bitmask can represent the
static graph, described in Section VI-B.

Dense. The dense mode is a straightforward method. A
payload is filled with almost valid cells, and bit vectors in
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Fig. 3: Three modes for data distribution

a bitmask are almost set. That is, the size of every chunk is
equal. Spangle can directly access a cell using an array index.

Sparse. Spangle drops invalid cells in the sparse mode.
While it can reduce the payload size, all cells lose their
initial positions (i.e., indices), which cannot directly access
cells with array indexes. To solve this challenge, we use a
bitmask to identify valid cells and inform the original position.
For the point query, for example, Spangle first searches for a
corresponding chunk and scans a bitmask. By counting ones
in a bitmask from the beginning to a given position, Spangle
can derive the initial position.

For a sparse matrix, bitwise operations such as and and or
are used between two matrices to reduce the computation over-
head. For example, the element-wise product needs a bitwise
and (&) operation. If a bit is unset (0), the corresponding cell
must be zero (null); therefore, the computation between two
cells is not required. By the and operation over two bitmasks,
Spangle does not multiply the element-pair when at least one
element in the pair is zero.

Super-Sparse. The super-sparse mode is that few valid cells
are in a chunk, and the bitmask size accounts for the majority
size of a chunk, where most bits in the bitmask are zero. This
case often arises when valid cells which are evenly distributed
(e.g., a normal distribution) rarely exist. Due to our chunk
management policy, if a chunk has more than one valid cell,
Spangle creates the chunk. If then, the bitmask size can be
larger than the payload size. Thus, to reduce the bitmask size,
we set two levels, called the hierarchical bitmask method. If
a bit at the upper level is zero, the corresponding word at
the lower level must be filled with all zeros, which leads to
removing the word.

B. Bitmask Operations

When arrays are managed in the sparse mode, the com-
putation to obtain the number of one-bits, called population
count, is required. In the literature, the algorithms [19], [20]
introduce the population count in a word, whereas a built-in
function achieves the best performance in practice. In Java,
the function (java.lang.Long.bitCount()) is a native
function, which can be treated by the JVM as intrinsic and be
interpreted with a single machine code instruction. However,
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the population count over several words takes a longer time.
For instance, assuming that a word is 64-bits in sparse mode,
accessing the 67th cell must compute the population count
of the first and second words. To reduce the processing time,
we propose a hybrid approach that combines sequential and
random access.

1) Sequential Access: The operators (e.g., Filter and Ag-
gregator, described in Section V), which read all cells, have
a sequential access pattern. Considering the pattern where
cells are accessed from the beginning (e.g., scanning all cells),
Spangle simply counts set bits from the previous position to
the current position, called the delta count. That is, the number
of bits for the following position is the count of the current
bits plus the delta count until the next position, which avoids
redundant computation.

2) Random Access: Few, but most frequently used opera-
tors have a random access pattern, such as subarray. In the
sparse mode, Spangle counts the set bit to access a cell. To
leverage the performance of the population count, we use
SIMD operations, which can accelerate the counting in parallel
with vectorization. Assuming that a computer supports AVX2
instructions, 256 bits (four words) can be computed in parallel.
To use AVX2 in the JVM, we employ JNI to call native
libraries because the AVX2 instruction library is called in the
C language.

In addition, we employ a population count algorithm [21]
to count the number of ones over 64 words in constant time.
It is important to determine the chunk size, which is related
to the algorithm and parallel processing. In our experiments,
the appropriate chunk size is approximately 4,096 (64 words) -
65,536 (1,024 words). In the case of the chunk size larger than
64 words, we locate milestones that store population counts
for every 64 words. As the SIMD operations are fast, however,
the overhead of JNI is incurred. Due to the overhead, we do
not use it for the sequential access pattern.

V. PROGRAMMING INTERFACE

In order to process multi-dimensional arrays, Spangle of-
fers declarative interfaces to support high-level programming,
which facilitates the implementation of both iterative algo-
rithms and interactive analysis. The array operators such
as filter and subarray are based on array algebra [22]–[24]
and map algebra [25], which are adopted in array-based or
geospatial systems [4], [5], [26]. Based on these algebras,
Spangle provides the following core operators: Subarray, Fil-
ter, Join, and Aggregator. In addition to these operators, we
add the matrix operators to support linear algebra on which
machine learning strongly relies. Of the operators, Aggregator
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Fig. 5: Matrix multiplication using bitmasks

requires aggregation functions, such as sum, min, and average,
and Spangle provides an abstraction to create user-defined
functions. Internally, bitwise operations are performed while
the operators process data. If the MaskRDD is used, bitwise
operations are more critical. In this section, we describe the
process of operators with bitwise operations.

A. Operators using Bitmasks

1) Subarray: Figure 4a shows the process of the MaskRDD
for Subarray. It retrieves cells in the rectangular sub-region
of an input array with the given top-left and bottom-right
coordinates. If there is a MaskRDD, chunks are selected in
the MaskRDD. Within the given range, bits in the virtual
bitmask of each chunk are set. Then, the bitwise-and operation
is executed between the virtual bitmask and the bitmask of
each chunk.

2) Filter: It filters out all cells that are not satisfied with
a given condition in a function. This function, specified by
users, returns true or false by examining every cell. If
the function evaluates a cell as false, Spangle treats the cell as
invalid. Spangle sets bit-vectors as false for a cell that shifts to
invalid. Then, it computes bitwise-and operation between both
bitmasks in a MaskRDD and an ArrayRDD (i.e., a selected
attribute), similar to Subarray, as shown in Figure 4b.

3) Join: It joins two arrays based on dimensions. In Span-
gle, the operator takes two arrays as inputs and returns a new
array. The number of attributes in the new array is equal to the
total number of attributes between the two input arrays. The
join operator has two sub-operators: and-join and or-join. The
and-join operator collects valid cells of the same position in
both two arrays, while or-join allows cells to be valid if either
of the cells is valid in the same position. In Figure 4c, if two
input arrays use the MaskRDD, it combines all ArrayRDDs
and executes AND or OR between two MaskRDDs (i.e., "�

and "�).
4) Matrix Operators: Matrix operators are used for linear

algebra, and one of the fundamental operations is matrix
multiplication. They use customized math operators, described
in Section VI, and library operators (i.e., Breeze). Figure 5
shows matrix multiplication using bitmasks. The bitwise-and
operation is performed between two bitmasks. Spangle extracts
candidate elements from two matrices and multiplies them, but
the multiplication is avoided if one of them is zero (null). This
is more effective when one of the two matrices is sparse.
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The cost of matrix multiplication is relatively high because
of the network overhead in the map-reduce environment.
Assuming that two matrices are partitioned using the same
method (e.g., hash or range partitioning), embarrassingly par-
allel matrix operations, such as addition and subtraction, can
be computed without data shuffling. Matrix multiplication,
however, shuffles chunks across partitions, and it joins two
matrices (i.e., ArrayRDDs) using ChunkIDs. Spangle follows
a distributed matrix computation process, similar to scatter and
gather. It joins two ArrayRDDs by the row ChunkID of a left
ArrayRDD and the column ChunkID of a right ArrayRDD.
After the matrix computation is completed, Spangle collects
corresponding chunks with the add operation to map the
resulting chunk.

Spangle minimizes the overhead by an alternative data
structure, either bitmask or offset array, only for matrix compu-
tation. The offset array is similar to the coordinate list format
(i.e., COO) but represents multidimensional coordinates as
one-dimensional coordinates. The conversion from a bitmask
to an offset array occurs only when the size of the bitmask is
larger than the size of the offset array. This conversion is only
applied to a static matrix that is hardly updated, for example,
the matrix of training data.

B. Aggregate Framework

Spangle provides Aggregator, a small framework for exe-
cuting aggregate functions (e.g., sum, avg, min). It receives
dimension names, such as x-axis and y-axis names, as pa-
rameters and summarizes an array into a value or values with
given conditions. That is, while aggregating an array, Spangle
generates the new schema determined by the given conditions.

The aggregate functions consist of four abstraction functions
that users can specify: 1) creating specific states for each
chunk and setting them to have a default value (Initialize);
2) gathering values in chunks into states along the given
dimensions (Accumulate); 3) collecting all states of chunks
and generates new states of the new schema (Merge); and 4)
evaluating the new states and returns the result (Evaluate).

Spangle also provides Accumulator that uses the abstraction
functions of Aggregator. Similar to Aggregator, it accumu-
lates each value along with an axis direction or user-defined
directions. Users can run this operator in parallel in either
a synchronous or asynchronous manner. If there are cells
involved in separate chunks in a direction, the value of a
previous cell must be computed with the next cell. This would
be slow since all chunks require synchronization in the chunk
boundary at every step, and the steps proceed one by one. In
contrast, in an asynchronous manner, every chunk computes
its values internally and then synchronizes. It is only allowed
when the application is insensitive to accuracy.

VI. MACHINE LEARNING

The array model can easily express a matrix without any
data conversion. A two-dimensional array directly shifts to a
matrix with the same dimensionality (i.e., row and column).

Spangle can seamlessly support statistical and machine learn-
ing algorithms, as most of them strongly rely on linear algebra,
elegantly expressed by matrices.

In this section, we describe the optimization and customized
machine learning algorithms in Spangle. To support linear
algebra effectively, we focus on optimizing the process of
matrix operations, especially for matrix multiplication. In
addition, we tailor two popular machine learning algorithms,
PageRank and stochastic gradient descent, for Spangle.

A. Local Join for Matrix Multiplication

Internally, the matrix multiplication includes Join and
Reduce operations provided by Spark. The matrix multiplica-
tion consists of three stages: two Join stages and one Reduce
stage. While joining two RDDs, Spark writes them to disk
prior to data shuffling. If chunks with the same IDs of two
matrices reside in the same partitions, Spangle can locally
join them, avoiding the shuffling cost. Still, in our observation,
sending chunks that have equal IDs to the same partition splits
stages and incurs disk I/O for the shuffle read and write.

Spangle provides an RDD wrapper that combines three
stages into one stage when two matrices use the same par-
titioner, and two chunks that have equal IDs are in the same
partition. That is, if left and right matrices are partitioned by
row IDs and column IDs, respectively, Spangle does not shuffle
them.

B. Graph Representation and PageRank

A matrix can represent a graph, � = (+, �), as an adjacency
matrix. The elements of the matrix indicate whether pairs of
vertices are adjacent. This matrix is efficient when a graph is
dense (i.e., |� | is close to |+ |2). In Spangle, a chunk consists
of a payload and a bitmask, and we make use of the bitmask
to represent the adjacency matrix. Because a bit-vector only
becomes zero or one, an adjacent matrix using the bitmask
can represent an unweighted graph, where the existence of an
edge is stored as one bit rather than eight bits (integer value).
The weighted graph, however, is not directly represented as
a bitmask. We describe how to represent a PageRank graph
using a bitmask in Spangle.

PageRank can be expressed as a direct and weighted graph.
The weight of each vertex is divided by the number of out-
edges and propagated to the other connected vertices. There
are variants of PageRank; however, we use a basic algorithm in
this paper to clearly describe our architecture. We assume that
rows are destination vertices, and columns are source vertices.
Because the propagated values in each column are zero or
specific equal values, we take the specific values out of the
matrix and create a vector (i.e., a one-dimensional array).

In specific, we use a power method, the equation of which
is

?8 = U
∑
9
(08 9 · ? 9 ) + (1 − U)/=

where 08 9 is the (i, j)-entry of the transition matrix, ? 9 is the
j-th element of the vector, and U is a damping factor. The
transition matrix is derived from the connectivity matrix. Let
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N be the total number of pages. The connectivity N×N matrix
A is created by defining the (i, j)-entry as

28 9 =

{
1, if there is a line from j to i.
0, otherwise.

To create the transition matrix from the connectivity matrix,
the 9 column is divided by the number of out-edges (F 9 ),
defined as

08 9 = 28 9 · F 9 (1)

where w is an N×1 vector. From PageRank and Equation (1),
the following equation is derived.

?8 = U
∑
9
(08 9 · ? 9 ) + (1 − U)/= = U∑

9
(28 9 · F 9 · ? 9 ) + (1 − U)/=

Thus, the original PageRank algorithm at the k-th iteration,

pk = U� · pk−1 + (1 − U)/=
is equivalent to

pk = U�
′ · (w ◦ pk−1) + (1 − U)/=

where the symbol, ◦, is the element-wise product (Hadamard
product). The transition matrix A can be decomposed into a
matrix A′ and vector w. In this decomposition, the bitmask
can represent the matrix A′, reducing the matrix size. We
implement the customized PageRank in Spangle using this
equation and evaluate its performance in Section VII.

C. Stochastic Gradient Descent
The gradient descent algorithm is one of the most well-

known and straightforward methods for solving convex opti-
mization problems [27]. It can be reformulated as a quadratic
minimization problem (e.g., least squares error) to solve a
system of linear equations. It is an iterative algorithm that finds
an optimal solution in convex and differentiable functions.

Formally, given the minimizing a function 5 associated with
the i-th observation in the data set, the equation is as follows:

xC+1 = xC − \
1
=

∑
8
∇ 58 (xC )

where x is updated for each step, t ≥ 0. x0 starts at an arbitrary
point, and it iteratively moves in the direction ΔxC with step
size \. However, computing the gradient every time for all
training data is costly. Alternatively, the stochastic gradient
descent (SGD) is widely used to reduce the cost. It randomly
selects a single training sample instead of the whole. The SGD
algorithm is expressed as

xC+1 = xC − \∇ 58 (xC )
where 8 is randomly selected. For distributed computational ar-
chitectures, especially in the map-reduce framework, stochas-
tic parallel algorithms have been actively studied [28], [29],
and we adopt the idea of the parallel SGD algorithm [30].
Similarly, the mini-batch gradient descent is also a common
method that selects a few training samples, known for its fast
convergence rate with statistical stability. In Spangle, users can
assign a parameter, U, to configure how many training samples
are used for each step. We present how to customize the SGD
algorithm below.
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C2
C2

Cm+2 Cm+2

Cm
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Pm

Cm
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Numbering

Numbering

Numbering

… … …

Cm+1

Fig. 6: Numbering chunk IDs

Mapping chunk IDs in parallel: In raster data, Spangle
first assigns chunk IDs to all cells, described in Section III-C,
and then collects them to create chunks (map and reduce) in
each partition. In the SGD algorithm, we can minimize the
overhead incurred by data shuffling. This is possible because
it is independent between the training samples. Figure 6 shows
how to assign them to training samples in parallel.

The " is a matrix based on training data, and H can be a
feature or labeled vector. A single row can be split by a specific
interval (i.e., the chunk size) along with columns. Given the
number of partitions (nP), a partition ID (pID), and a row
chunk ID (rID), the equation for chunk ID (�=) is described
as follows:

�= = =% · A �� + ?�� (2)

The A �� is initially zero and increases up to the number of
chunks, derived from the number of rows divided by the chunk
interval in a partition. After this equation is evaluated at the
first chunk in each partition, such as �1 and �<, generating
chunk IDs can be continued. The equation does not guarantee
consecutive chunk IDs when pID does not monotonically
increase. Nevertheless, the equation is valid because Spangle
only requires a unique ID for a chunk.

To compute SGD in parallel, Spangle distributes chunks
(e.g., hash partitioning) over partitions. However, this causes
the network overhead because a few reduce step is required
to evaluate xC+1. To minimize this overhead, every partition
randomly selects a couple of samples at each step using
Equation (2) reversely. It searches chunks in parallel, which
ensures the linearly scalable performance, according to the
parallel SGD algorithm [30]. From the above equation, each
partition can retrieve chunks by evaluating the rID. This
method is independent of partitioners, such as the hash and
range.

Customized SGD algorithm: For simplicity, we consider
a simple example that uses the gradient descent algorithm,
logistic regression. The logistic regression is a statistical model
widely used for analyzing data, where one or more indepen-
dent variables determine a dependent variable classified as
either zero or one. Suppose that the loss function is provided,
the linear equation is

xC+1 = xC − \")
C (ℎ("C · xC ) − yC )

where h(x) is a hypothesis such as a sigmoid, MC is a partial
matrix that consists of randomly selected samples, and x and
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Query Description

Q1
Aggregation

For all images in local coordinate space, compute
the average value of selected cells in a specific
range. This query might simulate, for example,
finding the average, background noise in the raw
imagery.

Q2
Regridding

In a specific range, regrid the raw data for the
images. Compute the average value of adjacent
cells. Gridding of the raw data values may be used
for an interpolation function.

Q3
Aggregation

For the observation, select cells in a specific range.
Then, compute the average values that match a
given condition.

Q4
Polygons

For the observations, select cells in a specific range,
and filter the cells that match a given condition.
Compute the observations whose values satisfy a
given condition.

Q5
Density

For the observations, select cells in a specific
range and group the observations spatially into
a specific range. Find cells containing more than
given observations.

TABLE I: Queries for raster data processing

y are vectors. In this equation, transposing a matrix is quite
expensive, consuming O(n/p), where n is the number of cells,
and p is the number of executors. Before adapting the SGD
algorithm to Spangle, we optimize the above equation to

xC+1 = xC − \ ((ℎ("C · xC ) − yt))"C )) (3)

Because the vector size is significantly smaller than the matrix
size in general, and the vector is one-dimension (i.e., 1×n),
Spangle does not need to transpose the physical layout of the
vector. Instead, it only replaces metadata (e.g., from 1×n to
n×1).

VII. EXPERIMENTS

We evaluate the performance of Spangle using real datasets.
Spangle was compared with three systems, which can process
raster data: SciSpark [31], RasterFrames1, and SciDB [6].
Afterward, we compared five systems to evaluate the perfor-
mance of matrix operations: Spangle, SciDB, Spark (COO),
MLlib (CSC), and SciSpark. Then, we evaluated Spangle
over two machine learning algorithms, PageRank and logistic
regression, using Spark built-in modules.

A. Experimental Setup

We ran our experiments on nine nodes, composed of one
master node and eight slave nodes. Each node has an Intel(R)
Core(TM) i7-8700 CPU @ 3.20GHz (six cores with hyper-
threading), 32GB DDR4 RAM, and 2 TB 7200RPM HDD.
In our environment, we used Ubuntu with 4.4.0 Linux kernel
version, OpenJDK 1.8.0 191 64bit, Hadoop 2.7.3, and Spark
2.3.3. We ran Spark from the master node in yarn-client mode,
with 24 executors, 2 GB driver memory, 10 GB executor
memory, and three threads per executor. We used 19.11 version
and set SciDB as the default settings with 24 instances.

1https://rasterframes.io/

B. Raster Data Processing

Datasets: We used two different raster datasets: SDSS from
astronomy surveys [2] and SeaWiFS L3 Chlorophyll, CHL [8].
As the SDSS website offers the images encoded in the FITS
file format [32], we converted them into a different data format
that comparison systems can understand, such as NetCDF,
CSV, and TIFF. Spangle can load the NetCDF and CSV
format, and we used NetCDF format in this experiment. Each
scanline has observed five filters (broad bands), called u g r
i z, with each consisting of 2048 by 1489 pixels basic units.
CHL has three dimensions (longitude, latitude, and time) and
one attribute (chlorophyll). Each cell is an eight-day average
of chlorophyll of the earth with a resolution of 9 km × 9 km.

Query: Table I includes benchmark queries for raster
data processing. We refer to a scientific data processing
benchmark [33], designed with collaboration from domain
experts. This benchmark consists of nine queries submitted
on: recooking on the raw data, observation data, and the
observation groups. Because comparison systems, SciSpark
and RasterFrames, do not execute all queries by using their
provided APIs, we select five queries and rewrite them to fit
into the systems. All queries select cells in a specific area of
interest to users, determined by a range [-1, .1] and [-2, .2]
such that -1 ≤ -2 and .1 ≤ .2. We measure the processing
time with actions such as count() since Spark evaluates map
operations when calling actions.

Result: We first evaluate the performance of the systems
for the raster data processing. Comparing Spangle with other
systems, we consider their ability to process the benchmark
queries. To load NetCDF files, SciSpark first loads data in a
dense format and then splits them, which makes it difficult to
hold large-scale arrays. If the size of an array is too large, it
can fail to load data before distribution. In addition, SciSpark
supports only a few APIs to process images (raster data).
We implemented functions that process benchmark queries
based on APIs of SciSpark. Besides, we transformed data from
FITS to TIFF because RasterFrames understands the TIFF file
format. We added an extra dimension for images, where the
results of the four systems were equal.

We implemented a method to load data in Spangle with
Unidata libraries2. SciSpark and RasterFrames cannot load
all images. SciSpark manages data as dense, which requires
more memory than Spangle. RasterFrames can reduce data by
compression for sparse data, but it reads them in the master
node and spread them to workers. Because of these limits
and fair comparison, we used the maximum amount of data
commonly processed in our environment for four systems and
excluded the data ingesting time.

Figure 7a shows the results of queries without a range query
using 100 images, while Figure 7b includes a range query
using 1,000 images. In this experiment, we set the chunk size
to 128×128×1. RasterFrames can support geometry operations
with geometry libraries; however, it often yields incorrect
results. Because we do not entirely trust the results of queries

2https://www.unidata.ucar.edu/software/netcdf-java/
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Fig. 7: Comparing raster data processing systems
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Fig. 8: The processing time along with the chunk size

for that reason, we do not use only a range query to compare
the four systems in Figure 7a.

Figure 7a shows that Spangle achieves a great performance,
except for Query 2. Spangle effectively manages and processes
sparse arrays without converting them into dense arrays. It
minimizes the network overhead incurred by the aggregation
operation, as managing sparse data at the optimal size helps
reduce the overhead. Similarly, operations (e.g., windowing)
that compute values with adjacent cells may lead to network
overhead, as those cells at the boundary are distributed across
workers. Spangle supports overlap, described in Section III-A,
which avoids data exchange for those operations. We used
this function for the second and fifth queries. As SciDB is
implemented from the scratch based on C++, we expected it
to be the fastest. Because SciDB pushes down queries, it can
reduce disk I/O overhead. However, queries such as Q2 and
Q5, which require computations, are relatively slow.

In Query 2, Spangle is slower than RasterFrames. When
loading data for regridding, RasterFrames must previously fit
the chunk size into the target grid (e.g., 3×3). This is not
flexible for other operators but beneficial because it does not
need to reshape the chunks. In contrast, Spangle can set the
chunk size regardless of the target grid. It reads a specific
range of a chunk for the target grid, which incurs computation
overhead for data access. In Figure 7b, Spangle outperforms
SciSpark. SciSpark manages sparse arrays as dense. It requires
more memory and may incur overhead when shuffling data.

Next, we evaluate the data size and processing time with a
sparse dataset between the dense and sparse modes described
in Section IV-A. Since the chunk size has an impact on the
performance, we varied it in this experiment. CHL stores the
average value every eight days. We fixed one at the time
dimension and set the latitude and longitude as the given
length, F. That is, the chunk size is F×F×1, where w is varied
from 16 to 1000. To measure the processing time, including
data access time, we used Filter and Aggregator that access
all valid cells.

Figure 8 shows that the processing time in dense and sparse
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Fig. 9: The data size and processing time

modes. The naive is the sparse mode that counts bits until
a specific position that operates each time. The dense is the
dense mode that manages an array as dense, and accesses a
cell in constant time by using an array index, whenever the
chunk size increases. The opt indicates the optimal bitmask
operations in the sparse mode, described in Section IV-B.
With the increasing chunk size, naive takes a substantial
time, compared with others. It reads the whole words for
each position, which becomes the main factor in accessing
cells and degrades the performance. In contrast to dense, opt
does not outperform but shows the comparable performance.
However, all methods do not achieve the best performance
if the chunk size becomes smaller. It seems that splitting a
large array as small chunks can have higher parallelism, but
the scheduling overhead affects the total processing time more
than the parallel processing.

Figure 9a shows the data size in memory for each mode
with increasing the chunk size. The dense mode substantially
increases along with the chunk size, but the sparse mode
maintains a relatively similar size regardless of the chunk
size. In the dense mode, it is necessary to store invalid
cells in a payload, which increases the data size. In both
modes, with a small chunk size, the data size decreases. If
a chunk is empty, Spangle drops it, which leads to reducing
memory space. However, as the probability of existing empty
chunks decreases before 64, the number of chunks increases
accordingly. Overall, while the optimal chunk size varies
with the data distribution and density, the sparse mode has
a significant contribution to reducing the data size.

Figure 9b shows the effect of the MaskRDD using the
Q5 query. The x-axis is the number of attributes. In this
experiment, we used five bands u, g, r, i, and z as attributes.
When employing the MaskRDD, the changes are evaluated
lazily. On the other hand, without the MaskRDD, all changes
are evaluated eagerly. That is, all masks in each attribute are
collected, and the AND operation is executed between bit-
masks. When using an attribute, the performance between the
two is similar. However, by increasing the number of attributes,
the difference is distinguishable. With the MaskRDD, the
processing time increases linearly, but without the MaskRDD,
it takes a significant amount of time to evaluate all attributes.
The MaskRDD consumes memory space, but improves the
performance when Spangle has attributes more than one at-
tribute.

C. Machine Learning

Datasets: Table II shows the datasets used in this exper-
iment. In Table IIa, we used relatively sparse matrices for
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Dataset Matrix Size Density
Covtype [34] 581K×54 0.218
Mouse [35] 45K×45K 0.014
Hardesty [35] 8M×8M 6.4e-7
Mawi [35] 129M×129M 9.3e-9

(a) Matrix Datasets

Dataset Edge Vertex
Enron [36] 367K 36K
Epinions [36] 508K 75K
LiveJournal [36] 69M 4.9M
Twitter [37] 1,468M 61.6M

(b) Graph datasets

Datasets # of Rows FeatureTraining Test
URL reputation [34] 1.9M 479K 3.2M
KDD Cup 2010 [38] 8.4M 510K 20M
KDD Cup 2012 [38] 120M 30M 55M

(c) Logistic regression datasets

TABLE II: Machine learning datasets
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ML core operations and generated vectors that consist of
random values for matrix-vector multiplications. In Table IIc,
we randomly split the datasets 80-20 to evaluate the test score
for logistic regression.

Result: In this section, we compare the systems in ML core
operations. Then, we evaluate Spangle with built-in modules
on Spark using PageRank and logistic regression.
ML algorithm core operations. To understand the perfor-
mance of machine learning algorithms, we first compared
five systems which support linear algebra operations: Spangle,
SciDB, Spark (COO), MLlib (CSC), and SciSpark. These are
variants of machine learning core operations, and we sum-
marize them as follows: matrix-vector multiplications (M×V
and V)×M) and transpose-self matrix multiplication (M)×M).
We exclude element-wise and scala-matrix operations because
they incur embarrassingly parallel workloads in the map-
reduce environment. Most machine learning algorithms, such
as logistic regression and support vector machine, include
M×V or V)×M. The algorithms are often expressed as M)×M
(e.g., principal component analysis).

Figure 10 shows the processing time for each system. The
x mark indicates that a system could not process an operation
because it occurred out of memory error or did not finish
in bounded time. As the transpose operation is expensive,
most systems take a long time V)×M, compared with M×V.
Spangle is not always the fastest, but it achieves excellent
performance and shows scalability. Especially, it can process
the multiplication for the large-size matrix (i.e., Mawi) by
optimizing the local join and the transpose operation for a
vector, described in Section VI. The COO format can process
Hardesty, but it fails to process Mouse. The number of non-
zero elements (i.e., density) affects the performance rather than
the matrix size.

Most systems fail to compute M)M because the operation
is too expensive, including matrix transformation and matrix
multiplication. As SciDB is the disk-based database system, it
takes a long processing time to process a huge matrix because
it incurs disk I/Os for temporal data that do not fit in memory.
In the Mawi datasets, it did not complete in the bounded time.
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Fig. 11: The processing time in PageRank

In summary, the major factor of the performance in matrix
operations is not only computational algorithms but also the
data size. As the volumes of intermediate data generated
during processing operations are enormous, the processing of
large-scale data should be considered.
PageRank. Without a built-in module (i.e., GraphX), we can
implement PageRank using Spark APIs [39]. Figure 11 shows
the performance of PageRank for Spangle, Spark, and GraphX.
We ran 20 iterations and measured the processing time for both
the end-to-end and each step, and all RDDs were cached. To
achieve the best performance of Spangle, we apply the sparse
mode to three datasets, Enron, Epinions, and Twitter, and the
super-sparse mode to Livejournal. Compared with the graph
model, the matrix may consume significant space, growing
along with O(=2), where n is the number of vertices.

Owing to the partitioning strategy and sparse data man-
agement technique, Spangle shows a similar performance
compared with two systems in relatively small data. Spangle
is slightly faster than Spark, and slower than GraphX in three
datasets, namely, Enron, Epinions, and Livejournal. In Twitter,
however, Spangle achieves the best performance. In contrast
to Spangle, the time for each iteration of GraphX increases.
GraphX manages tripletRDD used to join the VertexRDD and
EdgeRDD. Caching the EdgeRDD (large-scale data) causes
increasing data size along with iterations, and GraphX occurs
a shuffle to send a message from EdgeRDD to VertexRDD.
During this process, a new RDD is created to reduce the data
size for this shuffling. If Spark spills an RDD but needs to
reuse it soon, it re-generates that RDD by lineage. This occurs
at every iteration, which leads to doubles in the processing
time.
SGD algorithm. In this experiment, we compared Spangle
and MLlib which is a built-in module on Spark. Both systems
are on Spark and provide the logistic regression function.
In Spangle, we investigate and compare the performance by
varying the number of partitions, a parameter of the distributed
SGD algorithm. For both systems, variables for the algorithm,
such as tolerance and step size, are equally set. The tolerance
is 0.0001, and the step size is 0.6. We used two metrics,
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Datasets URL Reputation KDD CUP 2010 KDD CUP 2012
time (s) acc (%) time (s) acc (%) time (s) acc (%)

Spangle 193.7 94.26 32.9 86.62 1776.1 95.55
MLlib 185.6 94.21 - - - -

TABLE III: The performance comparison using three datasets
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Fig. 12: The processing time of logistic regression

accuracy (in short, acc) and training time, to evaluate the
two systems. The accuracy denotes the percentage of correct
answers, and the training time does not include the data
ingestion.

Table III shows the performance of Spangle and MLlib. We
expected that two systems can process all cases, but Spangle
only completed. MLlib fails to ingest two larger datasets,
incurring out of heap memory. For this reason, we can only
compare the performance of the two systems using URL
reputation. To fairly compare them, we fixed the accuracy
above 94.2% and measured the training time, as both two
systems can frequently obtain the accuracy in this dataset.
This result shows that the customized algorithm for Spangle is
comparable. However, Spangle has the challenge of achieving
more precise accuracy, as we do not yet implement a highly
optimized algorithm, such as the Adagrad algorithm.

Figure 12a shows the relationship between the number of
partitions and the processing time. In this experiment, we used
the URL reputation dataset. A small number of partitions leads
to a low parallelism. Meanwhile, a large number of partitions
incur network overhead for the reduce operation. Figure 12b
shows the performance of Spangle using our optimization
technique.

We investigate the two-step optimization introduced in
Section VI-C. The opt1 is a customized equation (3). The
opt2 is not to execute the transpose operation for a vector
but to replace the description, instead. Specifically, the opt1
optimization reduces the computational cost. This decreases
the processing time by 20%. Instead of transposing a training
set, the transposing vector, which is relatively small and
transformed for each iteration, has less overhead. The opt2
optimization avoids the computation cost, as Spangle only
replaces the description, not the physical layout. It improves
the performance of Spangle, by approximately 30%. Overall,
this optimization enhances the SGD algorithm and improves
its performance by approximately 43%.

VIII. RELATED WORK

There have been database systems and data-intensive com-
puting platforms for scientific analytics and machine learning.
Several systems are based on the array data model, such

as RasDaMan [5] and SciDB [6]. SciDB is a popular array
database system based on a multi-dimensional array model
and can manage ragged arrays. SciDB is not entirely designed
to store sparse arrays, as it does not support specialized
techniques or data structures for them. Since array database
systems are disk-based systems using SQL or SQL-like lan-
guage, they are less flexible than map-reduce. The ML library
is also insufficient for the community version. On the other
hand, Spangle mainly executes in-memory computations in a
map-reduce environment with sparse array management.

In addition, several systems based on Apache Spark have
emerged for scientific datasets in recent research. SciS-
park [31] provides APIs that abstract scientific data (i.e.,
NetCDF and HDF) using linear algebra libraries. However,
it has the mapping information inside a wrapper class and
provides few array operations. Users need to understand the
system and implement their operations. Especially in linear
algebra, SciSpark does not provide the matrix multiplication
in a distributed environment. RasterFrames can process spatial
data based on Dataframe of Spark SQL. Using DataFrame,
it can deliver a set of functionalities, horizontally scalable
for general analysts and data scientists. GeoSpark [40] is a
spatial data processing system on top of Spark. It can process
geometric type queries using three abstracted RDDs. However,
Spangle is a general-purpose array based system that can
process scientific datasets as well as a large-scale matrix. It
supports declarative APIs to manipulate arrays for ease of use
and effectively manages sparse arrays with a bitmask.

As many scientists have employed arrays to represent
matrices, a few systems have supported linear algebra and
machine learning. There are numerous systems on top of
Apache Spark, such as MLlib [12], SystemML [41], and
MLI [42]. MLlib is an embedded library that provides ma-
chine learning, but a pre-canned distributed implementation
for machine learning. This style is also a common approach
in systems such systems: Mahout [43], MADlib [44], and
H2O [45]. SystemML specifies machine learning algorithms
at a high-level with a declarative machine learning language.
Several systems also follow this style: OptiML [46] and
DMaC [47]. Furthermore, MLI provides linear algebra APIs
to build machine learning algorithms. This type is widely
used, such as TensorFlow [48] and PyTorch [49]. Spangle also
follows this design, but it mainly provides array and matrix
operators optimized by bitmasks. In particular, it supports
bitmask-based matrix operations.

IX. CONCLUSION

In this paper, we introduce Spangle, an array processing
system that provides declarative interfaces. It facilitates high-
level programming for both iterative algorithms and interactive
analysis. This high-level programming system significantly
increases the productivity of data scientists, as it is easy
to manipulate arrays without considering the mechanisms
involved. In addition, Spangle also supports machine learning.
Most of them rely on linear algebra, and Spangle effectively
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provides matrix operations. Our experiments show that Span-
gle is a competitive system compared with existing ones. It
can accelerate scientific analysis and enhance scalable array
processing on Spark with a massive amount of raster data.
Furthermore, our optimization technique can accelerate the
creation of a more accurate machine learning model.
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