
Best Student Paper Award

Distributed Cooperative Apache Web Server
�

Quanzhong Li
Department of Computer Science

University of Arizona
Tucson, AZ 85721

lqz@cs.arizona.edu

Bongki Moon
Department of Computer Science

University of Arizona
Tucson, AZ 85721

bkmoon@cs.arizona.edu

ABSTRACT
Given explosive data traÆc in the world-wide web (WWW),
it is crucial to achieve the scalable performance of web servers.
The overall performance and resource utilization can be im-
proved by spreading document requests among a group of
web servers. This leads to the design and implementa-
tion of Distributed Cooperative Apache (DC-Apache) web
server. In this paper, we describe the unique features of
the DC-Apache system (1) to migrate and replicate doc-
uments among cooperating servers, (2) using dynamic hy-
perlink generation to distribute requests for documents to
balance the load, and (3) to maintain replicated copies in a
consistent state. We also address the issue of storage man-
agement for more e�ective document replication under lim-
ited capacity. In the experiments, the DC-Apache system
demonstrated its ability to achieve high performance and
scalability by e�ectively distributing load among a group
of cooperating Apache servers and by eliminating hot spots
and performance bottleneck with replicated documents. The
DC-Apache system is an e�ective and practical solution to
provide high performance and scalability to cope with ever
increasing demands from clients all over the web.
keywords: WWW, Scalable Web server, Apache, DC-

Apache, Distributed Web server, Replication, Load balanc-
ing

1. INTRODUCTION
With the explosion of data traÆc on the World Wide

Web (WWW), web servers are often experiencing overload
from an increasing number of users accessing the servers at
the same time. To address the performance and scalabil-
ity problems of web servers, we propose a Distributed Co-
operative Apache (DC-Apache) web server solution. The
DC-Apache system can dynamically manipulate the hy-

�This work was sponsored in part by National Science Foun-
dation CAREER Award (IIS-9876037) and Research Infra-
structure programs EIA-9500991 and EIA-0080123. The au-
thors assume all responsibility for the contents of the paper.

Copyright is held by the author/owner.
WWW10,May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

perlinks embedded in web documents in order to distribute
access requests among multiple cooperating web servers.
A collection of web documents can be viewed as a directed

document graph, where each document is a node and each
hyperlink is a directed link from one node to another. The
DC-Apache solution takes this graph-based approach and
is built upon the hypothesis that most web sites only have a
few well-known entry points from which users start navigat-
ing through the documents on these sites. Empirical studies
performed on the current prototype system indicate that the
DC-Apache system has a high potential for achieving lin-
ear scalability by e�ectively removing potential bottlenecks
caused by centralized resources1.
TheDC-Apache solution poses the following bene�ts over

traditional systems based on packet-level manipulation, do-
main name services (DNS) and distributed �le systems:

� Network or packet level manipulation is not necessary.
There is no entity (such as a router) that needs to
touch every packet that is transferred between client
and server. This avoids the possible bottleneck.

� The DC-Apache system makes use of the connectiv-
ity of hyperlinks to directly control load balancing at
the �ner grained level of documents than using cus-
tom DNS servers. There is also no request redirection
that requires client to make two connections for one
request.

� By data replication, the DC-Apache can e�ectively
solve the hot spots problem caused by exceedingly pop-
ular web pages.

� Adding a new server is easy, 
exible, and cost e�ective.
Any available machine may be added as a cooperating
server.

Apache [10] web server has been chosen as a software plat-
form, on top of which the DC-Apache system is designed
and implemented. Apache is a high performance web server
with a fully featured functionality. A recent web server site
survey by Netcraft reports that over 60 percent of the web
sites on the Internet are using Apache web server [17].
The experimental results of DC-Apache server show that

the system can e�ectively distribute load among multiple
servers. It can also eliminate bottleneck by replicating hot
spots while keeping the consistency of replicated documents.

1The software distribution of the DC-Apache
prototype system (release 1.0) is available at
http://www.cs.arizona.edu/dc-apache.



URI Translation
DCA: Check if the

request is for a replicated
file, and if the server has

the copy

Header Parsing
DCA: Check if there is

load information header

Access Control
Authentication
Authorization

MIME type checking

Fixups

Wait and Read Request

Post Read Request
DCA: Start the response

timer

Response
DCA: Send document

content with dynamically
generated hyperlinks

Logging
DCA: End the response

timer and get the
response time; calculate

the server load

Cleanup

Response

Request

Client

Figure 1: Apache request processing cycle and
DC-Apache module functionalities

Moreover, it is easy and 
exible to build a scalable system
with only a small amount of con�guration work to the ex-
isting Apache server. We claim that DC-Apache system
can be put into practical use to build a scalable web server
system.
In this paper, we introduce the design and implementation

of DC-Apache as well as several techniques we used. The
remainder of this paper is organized as follows. Section 2
describes the overview of the DC-Apache system, including
the Apache module and how DC-Apachemodule is incorpo-
rated in the Apache server. The structure of DC-Apache
system is also described in this section. In Section 3, we
describe the mechanisms of load balancing and consistency
of DC-Apache. Also in this section, we discuss the issue
of storage management on cooperating servers under lim-
ited capacity. A few implementation details are discussed
in Section 4. Section 5 provides experimental results. We
overview related work brie
y in Section 6. In Section 7,
we present concluding remarks and suggestions for future
work.

2. OVERVIEW OF THE DC-Apache SYSTEM
Apache allows to extend its functionality by linking new

modules directly to its binary code. Using the API and mod-
ule interface provided by Apache, the DC-Apache module
is incorporated into the Apache server and its request pro-
cessing cycle. We call the Apache web server augmented
with the new module a DC-Apache system.

2.1 Apache Request Processing Cycle
The Apache request processing is divided into several

phases and each of server processes repeatedly handles re-
quests through these phases in a cycle. The diagram of the
processing cycle and phases is shown in Figure 1.
During the start-up of an Apache server, its main process

reads con�guration information, initializes con�gured mod-
ules and forks several child processes. Each of these child
processes then enters a request processing cycle to process
incoming requests in several phases. Each phase corresponds
to a processing handler. An Apache module can have its own
handlers and register them to the Apache server. When a

request arrives, the Apache server will call each handler to
process the incoming request. Figure 1 describes the func-
tionalities added by the DC-Apache module.

2.2 TheDC-Apache Module
Figure 2 shows the functional structure of theDC-Apache

system. The main process of the Apache server dispatches
requests to several child processes. Each child process ser-
vices the request in the request processing cycle in several
phases as described before. Using the handler mechanism,
we implemented the DC-Apache system as an Apache mod-
ule that processes requests in the request processing cycle.
The function of pinger process in Figure 2 is to compute
and collect load information about participating servers. It
also carries out the task of migrating and replicating doc-
uments. The shared memory contains the document graph
and statistics information.
In the request processing cycle, the DC-Apache module

mainly provides the URI translation handler and the con-
tent handler (corresponding toURI translation phase and
response phase) to deal with requests for documents that
may be hosted by co-op servers, as described in Figure 1.
In this paper, we call the server that has the original copy
of a document the home server of the document, and call
the cooperating server a co-op server. The purpose of URI
translation handler of the DC-Apache module is to inter-
cept the requested URI and to check if this URI is for a
replicated document. If it is the case, then check if the
server has the document and if the document needs to be
re-fetched for consistency reasons. The server will get the
document from the home server of this document if it needs
to. Then the request will be processed as a normal request.
Another important handler is the content handler, which
produces the content of the response. The DC-Apache sys-
tem will dynamically generate the hyperlinks in a document
according to the current status of document migration and
replication. This will be described in later sections.

3. REPLICATION AND LOAD BALANCING
Load balancing among multiple web servers can be

achieved by migrating a document from a server to an-
other and/or replicating a document across more than a web
server. Figure 3 illustrates the di�erence between migration
and replication. In the �gure, if document D is migrated
from server#1 to server#2, the hyperlinks will be modi-
�ed so that documents B and E point to document D on
server#2. On the other hand, if document D is replicated on
server#1 and server#2, both the servers can provide service
for document D. The hyperlink to document D in document
B (or E) can point to either of the two copies, which will be
determined dynamically.
There are a few advantages for a migration-only

approach [2]. First, it is relatively easy to maintain the
consistency of documents. Second, whenever a document is
requested, the request will be handled by a server on which
the single copy of the document currently resides, without
a potentially complicated process for choosing a server from
several servers that host a replicated copy of the document.
At the presence of a few extremely popular web documents
(i.e., hot spots), however, it becomes very diÆcult to achieve
even distribution of load particularly when the number of
cooperating web servers grows beyond a few.
The DC-Apache system is based on document replication



HTTPHTTP

HTTP request
to server

Internet

Internet or
LAN

HTML
pages

Apache

Child PingerChild

SHM HTML
pages

Apache

Child PingerChild

SHM

Co-op Server Co-op Server

HTTP request to
co-op server

HTML pages and
data objects

Apache server

Child process

Request
Processing
Cycle

Pinger
Process

Child process

Request
Processing
Cycle

Shared memory

Dispatch
requests

Client

Home Server

Client

Figure 2: Functional Diagram of the DC-Apache System.

A B F G H

C D E I J K

Internet

Server # 1 Server # 2

A B F G H

C E I J K

Internet

Server # 1 Server # 2

D

A B F G H

C D E I J K

Internet

Server # 1 Server # 2

D
Replicate D

Migrate D

Figure 3: Migration and Replication

for load balancing. This section describes the framework for
load balancing, document replication under limited storage,
and consistency issues.

3.1 Framework for Load Balancing

3.1.1 Collect Load Information
To balance work load among cooperating servers, each

server needs to know the current load situation of the other
servers. This information is global in nature, but each server
maintains its own local view of the global state. The best-
e�ort global load information is stored on each server.
Since the network is already presumably �lled with many

user requests and responses, it is desired not to initiate any
additional data transfers simply for the purpose of commu-
nicating load information. Such a solution would be wasteful
in a system where network bandwidth is an important re-
source. Instead, the chosen solution is to piggyback the load
information onto existing HTTP transfers. When a co-op
server requests a copy of a document from a home server of
the document, its load information will be piggybacked in-
side the HTTP packet, without incurring additional traÆc

between servers. The idea of piggybacking information has
been used for cache coherency by server invalidation [13].
If load information is not being communicated frequently

enough on rare occasions, then it is possible to insert an arti-
�cial transfer to communicate load information. This would
incur additional overhead since the transfer would not have
occurred normally. The DC-Apache system uses the pinger
process to watch for out-of-date information and automat-
ically generate arti�cial transfers to bring the information
up to date. It issues HEAD requests to other co-op servers
periodically. Then, the co-op servers return their load infor-
mation in the response HTTP header.

3.1.2 Dynamic Hyperlink Generation
When a document is replicated to any of co-op servers, all

the subsequent requests for the replicated document need to
be directed to one of the servers that host the document.
Thus all the replicated copies should be kept track of and
all hyperlinks pointing to the document should be updated
dynamically between original and replicated copies in a way
load is balanced among servers.

3.1.2.1 Client-Select.
One possible way to realize dynamic hyperlink generation

is to embed alternatives for a hyperlink in a document itself
and let clients make a selection. All or part of replicated
copies can be listed as alternatives in the href tag. This
method, however, increases the size of a document and re-
quires clients (i.e., browsers) to be able to handle additional
attributes in href tags. More importantly, servers will have
no control over the selection of hyperlinks, and clients will
not be able to make informed decisions without knowing
the load situation of servers. This makes the client-select an
unrealistic approach and leads us to the following approach.

3.1.2.2 Server-Select.
The solution of our choice is to let home servers dynami-

cally generate hyperlinks when serving each request. For ex-
ample, if the requested document contains a hyperlink that



can be chosen from several alternatives, the home server of
the document makes a selection based on global load in-
formation and reconstructs the document by updating the
hyperlink accordingly.
To speed up the processing, we do not parse documents

on each request. Instead, documents are parsed once at the
system start-up time. Then, the information about hyper-
links (i.e., positions and lengths) is stored in the document
graph. When serving a document upon its request, if the
document contains a hyperlink pointing to a replicated doc-
ument, the DC-Apache system replaces the hyperlink in
the document with the one generated at the service time,
based on the global load information. This approach allows
servers full control over load balancing by dynamically se-
lecting a hyperlink to a replicated copy hosted by a lightly
loaded server.
In order to balance load eÆciently with minimal number

of documents to replicate, the DC-Apache system main-
tains a list of candidate documents for replication. This list
contains frequently requested documents. Only documents
in this list are considered for replication. The issue of select-
ing a server to host those replicated copies will be discussed
in Section 3.2.
It should be noted that the physical copy operation to

replicate a document is delayed until the replicated copy is
actually requested by a client. When a document is chosen
for replication, the decision is merely recorded in the docu-
ment graph. This policy, which we call lazy replication, has
been chosen to avoid replicating a document that used to
be frequently requested but would never be requested due
to the change in document request patterns.

3.1.3 Relative Hyperlink Resolution
If a document containing a relative hyperlink (e.g., href

= "foo.html") is replicated to a co-op server, this rela-
tive hyperlink will be resolved incorrectly if a client gets
the copy from the co-op server. Although the actual doc-
ument pointed to by the relative hyperlink resides on the
home server, the client may resolve this relative hyperlink
as if it points to the co-op server. We may avoid this prob-
lem by changing all relative hyperlinks to absolute hyper-
links. However, the expansion of relative hyperlinks can
make the document larger if there are many relative hy-
perlinks, thereby consuming more disk space and network
bandwidth. In the DC-Apache module, we solve this prob-
lem by using the BASE element of HTML. If a document does
not have a BASE element, we will dynamically add one when
sending out the document. The value of this BASE element
is a hyperlink pointing to the home server. It indicates the
original location of this document. With this information, a
client can correctly resolve relative hyperlinks.

3.2 Replication and Replacement under
Limited Storage

In the DC-Apache system, the amount of storage set
aside for replicated copies from other servers can be speci�ed
in the con�guration. The DC-Apache system will automat-
ically check the disk usage and guarantee the aggregate size
of replicated documents is no more than the assigned quota.
Due to the limited disk space, a co-op server may delete

a replicated document from its local store and free space for
newly replicated documents. If a deleted copy is requested
later, the document needs to be fetched from its home server

again. Deleting and re-fetching a document frequently can
cause the system to thrash. In the rest of this section, we
examine load balancing methods and present better ways to
deal with such a situation.

3.2.1 Naive Initial Approach
Under this approach, when a home server is overloaded,

the DC-Apache system seeks to replicate documents from
the home server to other servers. A co-op server with the
least amount of load will be selected to host the replicated
documents. If the aggregate size of replicated documents
grows beyond the alloted disk quota on a co-op server, the
co-op server will delete some of the replicated copies. This
can cause the system to thrash with recurring requests for
the deleted copies as explained above. It can also impose the
home server with additional load to fetch deleted documents
again and again. To make it worse, as the home server is
already overloaded, more documents will be replicated from
the home server to other servers, which will make the system
more vulnerable to thrash. The following sections propose
ways to break this vicious cycle.

3.2.2 Deletion-Aware Method
To prevent deleted copies from being requested frequently,

a co-op server informs a home server when a replicated copy
from the home server is deleted from its local store. On
such a notice, the home server revokes the replicated copy
from the co-op server by taking the replicated copy o� the
list of alternative hyperlinks. For implementation details,
such deletion notices are sent to a home server in UDP pack-
ets. The pinger process of the home server is responsible for
receiving and processing those messages.
If an overloaded co-op server has a relatively small disk

space for replicated copies, the co-op server may need to
evict and replace replicated copies frequently. Consequently,
a home server has to deal with many deletion notices.

3.2.3 Resource-Aware Method
Recall all the decisions about document replication are

made solely by a home server. Given the information as
to how many documents have been replicated to which co-
op servers is already available on a home server, each home
server can be better poised with additional information about
the disk quota of other servers. That is, when a docu-
ment is being replicated, its home server can choose a co-op
server which a replicated copy will be sent to, considering
the amount of disk space available on the co-op server.
A home server maintains a list of replicated documents

and the aggregate size of replicated documents for each co-
op server. During load balancing process, a home server will
replicate a document to or revoke one from a co-op server
according to the following guidelines.

� [Replication] If a co-op server is lightly loaded and
disk space is available for a document to be replicated,
send the replicated copy to this co-op server.

� [Revocation] If a co-op server is heavily loaded, then
revoke documents from this co-op server. Change the
list of replicated documents and the aggregate size of
replicated documents accordingly.

� [Replacement Policy] If a co-op server is lightly
loaded, but there is no available space to host the repli-
cated copy of a document, replace unpopular copies



with popular documents in an attempt to balance load
by shifting more load to this lightly loaded co-op server
without exceeding the disk quota.

Replicating, revoking and replacing a document are all
lazy in the sense that the physical e�ects of these opera-
tions will be materialized only when the document copy on
a particular server is actually requested by a client. Upon
requests for a replicated copy, a co-op server will obtain the
copy from its home server. When the copy is revoked from
the home server, the co-op server is not noti�ed. Instead,
the revoked copy is removed from the list of replicated doc-
uments on the home server. It will become less popular on
its current co-op server, and will be eventually evicted by
the document replacement policy described above.

3.3 Consistency of Replicated Documents
The replicated documents on co-op servers and the orig-

inal document on the home server must be in a consistent
state in order to give users a consistent view of the whole
web site. Two approaches can be used to maintain the con-
sistency. One is the home server invalidation approach. The
other is co-op server validation approach.

3.3.1 Home Server Invalidation
As described above, the home server has the replication

information of documents. When a document is modi�ed,
the home server can use the following three methods to keep
the consistency.

Active Update The home server sends the new copy to
co-op servers that have an old copy. Subsequent client
requests do not need to wait for the new copy to be
fetched back. This method can maintain a high consis-
tency. However, it may cause heavy load on the home
server and consume too much network bandwidth in a
short time.

Explicit Noti�cation The home server sends noti�cations
to co-op servers to invalidate old copies. A co-op server
then deletes old copies upon receiving the noti�cation.
In the future, when there is a request for a new copy,
the co-op server will fetch the new copy from the home
server.

Implicit Noti�cation In this method, there is no noti-
�cation to co-op servers. The home server puts the
version number or timestamp in the generated hyper-
links. For example, a possible hyperlink looks like
http://coop1/~migrate/timestamp/home/foo.html.
Upon receiving such a request and the timestamp in
the hyperlink is greater than the last modi�cation time
of its local copy, the co-op server knows that it needs
to get a new copy from the home server.

3.3.2 Co-op Server Validation
While the home server invalidation approach puts all

consistency maintenance work on the home server, the co-
op server validation approach can distribute the burden of
consistency maintenance among co-op servers. In the
DC-Apache module, we use this approach based on time-
out.
There is a time interval used to check whether a co-op

server needs to update a replicated document. When there

is a request for a replicated document and the di�erence be-
tween current time and the last check time of this copy is
greater than this interval, the co-op server will use a condi-
tional GET request of HTTP to see if the document should
be retrieved again. Thus, only when there is a request for a
replicated copy, will the co-op server try to update the copy.
We call this lazy update. This means only client requests for
a document can trigger its update. This is especially im-
portant for large documents (such as in Sequoia data set),
since we do not want to consume too much bandwidth for
the consistency maintenance.

4. IMPLEMENTATION DETAILS
The DC-Apache system has been implemented as an

Apache module on Unix platforms. In this section, we dis-
cuss a few implementation details of the DC-Apache mod-
ule.

4.1 Multi-Threaded vs. Pool-of-Processes
Most web servers are based on either a multi-threaded

model (e.g., phttpd [8]) or a pool-of-processes model (e.g.,
Apache server [9]) to deal with concurrent requests from
multiple clients. Although the DC-Apache system can be
implemented atop either of the models, the current pro-
totype is based on the pool-of-processes model, because a
multi-threaded version of Apache was not available at the
time of implementing the DC-Apache system.
The multi-threaded model is considered more eÆcient than

the pool-of-processes model in processing concurrent
requests, because it avoids the cost of creating and destroy-
ing processes and the overhead of switching contexts of pro-
cesses. It is also easier to share information between threads
than processes. The next release of the DC-Apache system
will support the multi-threaded model2.

4.2 Management of Shared Information
A document graph needs to be built on each server. Since

the DC-Apache system is based on the pool-of-processes
model, the document graph and other related information
(such as statistics of co-op servers and replicated documents)
should be shared by all Apache processes on a server. The
information is stored in a shared memory and semaphore
is used to coordinate accesses to the shared memory. The
structure of shared memory is shown in Figure 4. The shared
memory can grow incrementally by adding a block at a time
to accommodate a varying number of documents.
Each document record contains data such as a document

name, a list of outgoing hyperlinks, a BASE element position,
servers hosting the document, and so on. A block table is
used to index the blocks in the shared memory and to indi-
cate the status of the blocks (e.g., initialized or allocated).
Each process maintains a separate table in its private mem-
ory. Each entry of this table indicates whether a block is
associated with the process and it stores the address of the
block in the private address space of the process. This in-
formation is used to translate a logical address (i.e., a pair
of block and record) into an address in the private memory
space of a process.
When a document is requested, the DC-Apache module

2On Unix platforms with POSIX threads support, Apache
2.0 can now run on a hybrid of multi-threaded and pool-of-
processes models.



Logical address

SHM Key

Flag
000001

1

-

0

-

0

000002

1

-

0

-

0

Public table

Private
table

^

^

^

^

^

Free list

Memory Block (key=000001)

Document record

Document record

Document record

Document record

Empty

Empty

Empty

Empty

Empty

Empty ^

Memory Block (key=000002)

1

3

Block num

Record num

Logical Pointer

Shared Memory

Process Private
Memory

Figure 4: Shared memory structure.

uses the name of the requested document to locate the doc-
ument record in the shared memory. A hash table is used
to translate a document name into the logical address of
its document record. Collisions in the hash table can be
resolved by linear hashing [15], which is a dynamic open
hashing scheme.

5. EXPERIMENTS
We benchmarked the DC-Apache system on a cluster

of 64 Intel Pentium workstations. Each workstation has a
processor of 200 MHz clock rate and 128 MB memory, and
runs Linux kernel version 2.2.14. They are connected by a
Catalyst 5500 switch, which provides a 100 Mbps switched
Ethernet connection. The switch can handle an aggregate
bandwidth of 2.4 Gbps in an all-to-all type communication.
Apache server version 1.3.6 is used as a software platform
which the DC-Apachemodule is incorporated into. In most
experiments, the number of servers was varied from one to
16 workstations, and the rest of the workstations are used
to run client processes.

5.1 Data Sets and Performance Metrics
We have chosen three data sets (Sequoia, MAPUG, LOD)

from real-world applications and a synthetic data set gener-
ated from the SPECweb99 benchmark program [6]. These
data sets are described in the following.

Sequoia Benchmark data: It contains 130 AVHRR im-
age �les from NOAA satellite [19]. The images are
compressed and in the 1-2.8 Mbytes range. We created
an HTML front-end page that includes a hyperlink to
each image �le.

MAPUG Mailing List Archive: The mailing list archive
contains 1,534 documents, 28,998 links and 5,918
Kbytes aggregate size of all �les. The data set is mostly
text, each with 4-6 bit-mapped images, which have a
high request rate.

LOD Role-Playing Adventure Guide: This data set is

Performance of Different Server Process Number

600

610

620

630

640

650

660

670

680

690

700

710

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Number of Clients

C
o

n
n

ec
ti

o
n

s 
/ S

ec
o

n
d

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

default

Figure 5: Apache con�guration test result

a graphical database for a popular computer role play-
ing game, with 349 documents and 1433 links (240 of
the 349 documents are images). The aggregate size of
the documents is 750 Kbytes.

SpecWeb: This data set is generated by SPECweb99 [6].
The total size is 1027897 bytes. There is a single index
HTML �le to index all data �les. The hyperlinks in
the index �le pointing to data �les can appear more
than once according to the workload distribution of
SPECweb99.

We have used three major performance metrics, namely
connections per second (CPS), bytes transferred per second
(BPS) and round-trip time (RTT). The round-trip time
(RTT) is the interval between the moment when a client
sends out a request and the moment when it receives the
response. This includes the network overhead (connection
and transfer time) and the server processing time. All the
three metrics are measured at each client side.
Real-world web transactions are fairly small [1]. So we

use CPS as a primary metric for the purpose of load bal-
ancing for making decisions regarding document replication.
The pinger process computes a numeric value to indicate the
work load of each server, using the following formula.

Lnew = Lold � �+ Scurrent � (1� �)

where Lnew and Lold are new and old measurements of load,
Scurrent is the current load sample, and � is a tunable pa-
rameter that re
ects the relative weights between current
and history load measurements. In our experiment, the
value of � is set to 0.5.

5.2 Settings for a Stand-alone Apache Server
There are several run-time directives to con�gure the

Apache server. Using the directives, an Apache server can
be set up to start with a certain number of child processes,
and the number remains unchanged during the experiments.
The number of processes particularly has a substantial im-
pact on the performance of a stand-alone Apache server. We
carried out experiments with the LOD data set to evaluate
the performance impact of these parameters.
Figure 5 shows a general trend that the performance be-

comes worse as the number of clients (and load) increases.
More importantly, we made two interesting observations.



First, when work load is light (with a small number of
clients), an Apache server with fewer processes outperforms
those with more processes. Second, when work load is heavy,
the performance of an Apache server with a few processes
degenerate rapidly as the number of clients increases.
One plausible explanation for the �rst observation is that

the overhead of context switch and process scheduling in-
creases, as the number of server processes increases. For the
second observation, we conjecture that a large number of
TCP connection requests are queued in the system kernel,
because those connection requests are not processed quickly
enough by only a few processes. This large queue slows down
the packet processing speed in kernel due to the increased
cost of maintaining a large number of TCP states.
Using default con�guration of the Apache software distri-

bution, we observed that with 16 clients sending requests
continuously, the number of server processes will soon reach
150 and remains at that number. This indicates that the
limit of the processing capability of a stand-alone Apache
server is reached, and the performance of the server may be
improved by altering the con�guration of the server. Based
on the this observation, we used a �xed number of server
processes throughout the experiments. Thus, the overhead
of process creating and termination did not have much in-

uence on the performance of the DC-Apache system.

5.3 Evaluation ofDC-Apache System
In the experiments, the number of clients was varied from

16 to 544 with an increment of 16 or 32. The performance
measurements were �rst logged at client side, and then col-
lected to compute the averages.

5.3.1 Scalability and Hot Spots
In Mapug data set, there are only a few images, but those

images are pointed to by most of the documents. This makes
the images hot spots. Under the migration only approach,
it is hard to distribute these few hot spots among servers in
such a way the load is evenly distributed. Those hot spots
become the major limiting factor on the scalability of the
entire system. In the DC-Apache system, this problem is
resolved by using the replication approach. Those popular
images can be replicated to multiple co-op servers and the
requests for them can be served by those servers at the same
time, so that the scalability is not limited by hot spots.
The experiment results from the Mapug data set are pre-

sented in Figure 6(a) and Figure 6(b). These two �gures are
for connections per second (CPS) and bytes transferred per
second (BPS), respectively. This experiment examines the
scalability of the DC-Apache system for a di�erent num-
ber of servers with a varying number of clients (from 32 to
544). In both �gures, the performance improves in a scal-
able manner with an increasing number of servers, even at
the presence of a few hot spots in the data set.
Figure 7(a) and Figure 7(b) show the performance mea-

sured in CPS and BPS respectively for all of the four data
sets. In these �gures, the number of servers was varied from
1 to 16, and the number of clients was 256. Those �gures
show that, for all data sets we used, the DC-Apache system
yielded near-linearly scalable performance.
The average response times measured at client side are

shown in Figures 8(a) and 8(b) for SpecWeb and Sequoia
data sets, respectively. As the number of servers increases,
the response time decreases reversely proportionally. This

&RQQHFWLRQV�SHU�6HFRQG�RI�0DSXJ

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544

1XPEHU�RI�&OLHQWV

&
R
Q
Q
HF

WL
R
Q
V�
��6

HF

1 server
2 servers
4 servers
8 servers
16 servers

(a) Connections per second

.E\WHV�SHU�6HFRQG�RI�0DSXJ

0

5000

10000

15000

20000

25000

30000

35000

40000

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544

1XPEHU�RI�&OLHQWV
.
E
\W
HV

���
6
HF

��VHUYHU
��VHUYHUV
��VHUYHUV
��VHUYHUV
���VHUYHUV

(b) KBytes per second

Figure 6: CPS and BPS from Mapug data set

10

100

1000

10000

1 2 4 8 16

C
on

ne
ct

io
ns

 p
er

 S
ec

on
d

Number of Servers

Connections per Second

SpecWeb
Lod

Sequoia
Mapug

(a) Connections per second

1000

10000

100000

1 2 4 8 16

K
by

te
s 

/ S
ec

on
d

Number of Servers

KBytes per Second

SpecWeb
Lod

Sequoia
Mapug

(b) KBytes per second

Figure 7: CPS and BPS from all data sets



Response time of SpecWeb data set

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Number of Clients

R
es

p
o

n
se

 t
im

e 
(u

s)
1 server
2 servers
4 servers
8 servers
16 servers

(a) Response time of SpecWeb

Response time of Sequoia data set

0

10000000

20000000

30000000

40000000

50000000

60000000

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Number of Clients

R
es

p
o

n
se

 t
im

e 
(u

s)

1 server
2 servers
4 servers
8 servers
16 servers

(b) Response time of Sequoia

Figure 8: Client response time

is another evidence that the DC-Apache system has a high
potential to achieve near-linearly scalable performance.

5.3.2 Replication under Limited Storage
With SpecWeb and Sequoia data sets, we carried out ex-

periments to show the e�ects of the limit on disk space of co-
op servers. Three proposed methods were examined to deal
with the problem of limited storage for document replica-
tion. One server was designated as a home server of all doc-
uments, while the other servers were used as co-op servers.
The disk quota reserved for replicated documents on a co-op
server was varied from zero byte to 1.2 MBytes for SpecWeb
data set, and from zero to 256 MBytes for Sequoia data set.
As shown in Figure 9, for all three proposed methods, if

the disk quota is set to zero (i.e., no documents are repli-
cated), the performance of the DC-Apache system is re-
duced to one server case, obviously because no co-op server
can share the work load. Again, for an obvious reason, if
the disk quota is large enough to replicate an entire set of
data, the DC-Apache system yielded the best performance
regardless of the methods for storage management. For
SpecWeb data set, as shown in Figure 9(a), the Resource-
Aware method outperformed the other methods over the
entire spectrum of disk quotas. Then, it was followed by the
Deletion-Aware and Naive methods. This was an expected
result, because the Resource-Aware method could do bet-
ter in replicating documents with knowledge about the disk
quota of co-op servers. With the Naive method, the perfor-
mance drops quickly, even when the disk quota is less than
the size of an entire data set only by a small margin.
On the other hand, for Sequoia data set, as shown in Fig-

ure 9(b), the Deletion-Aware method was better than the

Disk Quota of SpecWeb

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200 400 600 800 1000 1200

Disk Quota (KB)

C
o

n
n

ec
ti

o
n

s 
/ S

ec
o

n
d

Resource Aware

Deletion Aware

Naïve Initial

(a) Disk quota of SpecWeb

Disk Quota of Sequoia

0

10

20

30

40

50

60

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Disk quota (MB)

C
o

n
n

ec
ti

o
n

s 
/ S

ec
o

n
d

Resource Aware

Deletion Aware

Naïve Initial

(b) Disk quota of Sequoia

Figure 9: Comparison of Three Methods for Repli-
cation under Limited Storage

Resource-Aware method. By the Resource-Aware method,
if a home server decides to stop pointing to a replicated
copy, the copy on a co-op server will be requested less and
less frequently until it will be eventually deleted by the re-
placement policy of the co-op server. This implies that the
copy and its disk space are not utilized for a certain period
of time. Since individual �le sizes are large in Sequoia data
set, such loss of opportunity could be signi�cant. However,
for Deletion-Aware method, a home server does not stop
pointing to the copy until the home server is noti�ed from
a co-op server that the copy is actually deleted.

5.3.3 Overhead ofDC-Apache module
The experiment results of the DC-Apache module over-

head are shown in Figure 10. This experiment was done
using LOD data set with one server and a di�erent num-
ber of clients. The server used the default con�guration of
the Apache server. There were 5 child processes at startup
time, and the server could deal with at most 150 concur-
rent requests. We tested the server in four cases: 1) com-
piled without the DC-Apache module; 2) compiled with an
empty module, with only a return statement in each handler;
3) compiled with a module in which the content handler has
one semaphore operation and other handlers are empty; 4)
compiled with the DC-Apachemodule. If the server is com-
piled with the DC-Apache module, the DC-Apache mod-
ule will use its own content handler to send request response.
In other cases, the server uses the default Apache handler
to send response. The module interface overhead tested by
the empty module case is around 0.9% for both CPS and
throughput. Using the DC-Apache module added an aver-



Connections per Second Overhead

500

520

540

560

580

600

620

640

660

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Number of Clients

C
o

n
n

ec
ti

o
n

s 
/ S

ec
o

n
d

Without DC-Apache

Empty Module

One Semaphore Module

With DC-Apache

Throughput Overhead

1700

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Number of Clients

K
b

yt
es

 / 
S

ec
o

n
d

Without DC-Apache

Empty Module

One Semaphore Module

With DC-Apache

(a) CPS Overhead of LOD (b) Throughput Overhead of LOD

Figure 10: Overhead of DC-Apache Module

age overhead of 8.36% for CPS and 8.08% for throughput.
The DC-Apache module uses semaphore to coordinate the
accesses of shared memory, so we tested one semaphore mod-
ule case to see the e�ect of semaphore operation on perfor-
mance. We found that the overhead of this one semaphore
module was about 3.8%. If we took out the overhead of
module interface and semaphore operations, the rest of the
overhead will be at most 5%, which is used to send the doc-
ument content and to do logging work. When sending the
content, the DC-Apache module checks every hyperlink of
the document to see if a new hyperlink needs to be gener-
ated. Because we preprocessed each document and stored
hyperlink information in memory, this dynamic processing
of hyperlinks inside a document did not impose a signi�cant
overhead on the performance.

6. BACKGROUND AND PREVIOUS WORK
Because of the phenomenal traÆc growth of WWW, much

research work has been focused on the performance of web
servers.
Various DNS based scheduling techniques have been pro-

posed in the literature. The NCSA scalable web server [12,
14] is based on round-robin DNS to dispatch requests to web
servers. In order to cope with heterogeneous web servers and
the increasing complexity of the DNS scheduling, Adaptive
TTL algorithms [4] have been proposed to adaptively set
the TTL value for each address mapping request. It takes
into account both the uneven distribution of client request
rates and heterogeneity of web servers. The problem with
this DNS based method is that clients may cache resolved IP
addresses, which can cause load imbalance among servers.
And when a server is no longer in service, clients may still
try to use the cached IP address to visit this server.
The LocalDirector of Cisco [20] is an example of architec-

tures dispatching requests in TCP/IP level. The LocalDirec-
tor appears as one \virtual" server to clients. All traÆc is
directed to a virtual IP address (virtual server) via DNS.
Those requests are then distributed over a series of real IP
address servers (real servers). The dispatcher rewrites the
header of incoming IP packages and forwards the packages
to the selected server. The dispatcher also needs to keep
the TCP connection information and always forwards the
IP packages of the same request to the same server. Be-

cause all client requests are routed through the dispatcher,
this may cause network resource contention. The dispatcher
itself can be a bottleneck that limits the scalability and the
physical distribution of servers.
HTTP redirection based methods do the load balancing in

HTTP level. There can be one or more redirection servers.
The initial request is �rst dispatched to a redirection server,
using the techniques we mentioned above, such as DNS rota-
tion. The redirection server then dispatches the request us-
ing the HTTP redirection mechanism. A redirection-based
server architecture has been proposed in [16], which falls in
this category. The problem with this approach is that the
response time is longer, because the client needs to initiate
two TCP connections for one request.
A system model for dynamic replication and migration of

Internet objects is proposed in [18]. In the model, a request
is �rst directed to the \closest" distributor of a gateway, then
this distributor forwards the request to a redirector, which
forwards the request to a server hosting the requested object.
The selected server then sends the object to the client via the
distributor. In this model, one request needs several steps
to travel through the system and the proposed algorithms
use information from routing databases and IP headers.
There are other techniques based on the ability of client

side. In the Dynamic Server Selection method [7], clients au-
tomatically determine the best server for a given �le without
a priori knowledge of server location or network topology.
They assume that a client has been provided with a list of
server addresses and the client can dynamically choose a
server according to distance measured by hops and round-
trip latency.
Several leading companies that support e-businesses like

Alteon [21], ArrowPoint [3], and Resonate [11] have their
own products to do content level switching. A web switch re-
ceives HTTP connections and looks into the request packet
to get the knowledge of requested content. Then it forwards
the request to a selected server using delayed binding tech-
nique. Because of the centralized nature of switching, all
client requests need to go through the web switch and the
web switch can easily become the bottleneck. The switch
will �rst establish the connection with the client and then
with the web server and it will perform NAT (Network Ad-
dress Translation) for each packet. The response time will



be longer than the direct connection with a web server3. Our
approach proposed in this paper aims at eliminating possi-
ble hops and bottlenecks between web servers and clients
while achieving the goal of load balancing among servers.

7. CONCLUSION AND FUTURE WORK
We have designed and implemented a prototype system

of the Distributed Cooperative Apache (DC-Apache) web
server. The DC-Apache system is based on the idea of
dynamic manipulation of the hyperlinks embedded in web
documents to distribute client requests among a group of
cooperating web servers. The DC-Apache system is built
atop Apache web servers by augmenting them with new
functionalities so that individual web servers can cooper-
ate and share work load as a collective unit. In particular,
the DC-Apache system supports seamless document repli-
cation as a means of load balancing as well as document
consistency. Additionally, the DC-Apache system provides
methods to deal with issues concerning replication under
limited storage.
The experimental study shows that the DC-Apache sys-

tem can e�ectively distribute load among a group of cooper-
ating servers. It can eliminate performance bottleneck e�ec-
tively by replicating hot spots while keeping the consistency
of replicated documents. Moreover, it is easy and 
exible to
build a scalable system with only a small amount of con�g-
uration work to existing Apache servers. We conclude that
the DC-Apache web server system presented in this paper
is an e�ective and practical solution to provide high perfor-
mance and scalability to cope with ever increasing demands
from clients all over the web.
An issue that is not addressed in this paper is the use of ge-

ographic information of web servers and clients to make the
most of document replication. For example, if a document is
being requested frequently by clients located in a particular
region, it would be bene�cial to replicate this document to
cooperating servers in or near the region. When a document
is requested, a server that is geographically closest to a client
can be chosen to serve the request. With the evolution of
the Internet, new features and services will be added to the
current network (e.g., the anycast service). Further study
about how to utilize them in the design and implementation
of the DC-Apache system will be necessary.

8. REFERENCES
[1] Martin F. Arlitt and Carey L. Williamson. Internet

web servers: Workload characterization and
performance implications. IEEE/ACM Transactions
on Networking, 5(5):631{645, October 1997.

[2] Scott M. Baker and Bongki Moon. Distributed
cooperative web servers. Computer Networks,
31(11-16):1215{1229, 1999.

[3] CISCO. ArrowPoint communications.
http://www.arrowpoint.com/index.html, 2000.

[4] Michele Colajanmi and Philip S.Yu. Adaptive TTL
schemes for load balancing of distributed web servers.
ACM Sigmetrics Performance Evaluation Review,
25(2):36{42, 1997.

3Although the NAT peering of ArrowPoint acts as triangu-
lation protocol allowing the response to be delivered directly
to the user. One direction of 
ow still needs to go through
the switch [5].

[5] CISCO-ArrowPoint Communications. ArrowPoint
Web Network Services (WebNS).
http://www.arrowpoint.com/solutions/white papers/
WebNS.html, 2000.

[6] Standard Performance Evaluation Corporation.
SPECweb99 benchmark.
http://www.specbench.org/osg/web99, August 2000.

[7] Mark E. Crovella and Robert L. Carter. Dynamic
server selection in the internet. In the Third IEEE
Workshop on the Architecture and Implementation of
High Performance Communication Subsystems
(HPCS'95), August 1995.

[8] Peter Eriksson. Phttpd - a multithreaded web server.
http://www.signum.se/phttpd.

[9] Roy T. Fielding and Gail E. Kaiser. The Apache
HTTP server project. IEEE Internet Computing,
1(4):88{90, July/August 1997.

[10] The Apache Software Foundation. The Apache HTTP
server. http://www.apache.org/, 1999.

[11] Resonate Inc. Keeping E-Business Open for Business.
http://www.resonate.com, 2000.

[12] Eric Dean Katz, Michelle Butler, and Robert
McGrath. A Scalable HTTP Server: The NCSA
prototype. Computer Networks and ISDN Systems,
27:155{164, 1994.

[13] B. Krishnamurthy and C. E. Wills. Piggyback server
invalidation for proxy cache coherency. Computer
Networks and ISDN Systems, 30:185{193, April 1998.

[14] Thomas T. Kwan, Robert E. McGrath, and Daniel A.
Reed. NCSA's World Wide Web Server: Design and
Performance. IEEE Computer, 28(11):68{74,
November 1995.

[15] Witold Litwin. Linear hashing : A new tool for �le
and table addressing. In Proceedings of the 6th VLDB
Conference, pages 212{223, Montreal, Canada,
October 1980.

[16] Antoine Mourad and Huiqun Liu. Scalable web server
architectures. IEEE Symposium on Computers and
Communications, 1997.

[17] Netcraft. The netcraft web server survey.
http://www.netcraft.com/survey/, 2000.

[18] M. Rabinovich and A. Aggarwal. A dynamic object
replication and migration protocol for an internet
hosting service. IEEE Int. Conf. on Distributed
Computing Systems, May 1999.

[19] Michael Stonebraker, Jim Frew, Kenn Gardels, and
Je� Meredith. The SEQUOIA 2000 storage
benchmark. In Proceedings of the 1993 ACM-SIGMOD
Conference, pages 2{11, Washington, DC, May 1993.

[20] Cisco System. Scaling the internet web servers.
http://www.cisco.com/warp/public/751/lodir/
scale wp.htm, November 1997. White Paper.

[21] Alteon WebSystems. Alteon web switching.
http://www.alteonwebsystems.com, 2000.


