1

XML is quickly becoming the new standard for data rep-

XISS/R: XML Indexing and Storage System Using RDBM S *

Philip J Harding Quanzhong Li

Bongki Moon

Department of Computer Science, University of Arizona,sarg AZ 85721
{har di ng,| gz ,bknoon}@s. ari zona. edu

Abstract

We demonstrate the XISS/R system, an imple-
mentation of the XML Indexing and Storage Sys-

tem (XISS) on top of a relational database. The

system is based on the XISS extended preorder
numbering scheme, which captures the nesting
structure of XML data and provides the oppor-

tunity for storage and query processing inde-

pendent of the particular structure of the data.

The system includes a web-based user interface,
which enables stored documents to be queried
via XPath. The user interface utilizes the XPath

Query Engine, which automatically translates

XPath queries into efficient SQL statements.

I ntroduction

The ability to quickly determine ancestor-descendant re-
lationships is crucial to efficient query processing when
dealing with regular path expressions. With the numbering
scheme, translating regular path expressions to SQL state-
ments is straightforward, without need for recursive SQL
gueries.

In the XISS/R system, we implement the XML Index-
ing and Storage System on top of a commercial relational
database system. Several key issues involved in storing the
XML data using the numbering scheme are identified and
relational schemas are generated based upon the choices
made in resolving these issues.

The features of the XISS/R system include

e Aweb-based user interface, which enables stored doc-

uments to be queried via XPath.

e An XPath Query Engine, which automatically trans-

lates XPath queries into efficient SQL statements.

e Multiple relational schemas for comparison.

resentation and exchange in the Internet. An emerging is- ® Reporting of performance statistics.
sue is how to provide efficient storage and manipulation of

XML data [1, 2, 3, 5]. Since relational technology is ma-

System Description

ture and well-developed, using relational databases te sto The X|SS/R system consists of three components:

XML datais an important direction to explore. The XISS/R
system demonstrates an efficient approach for using rela-

1. A mapping of XML data to relational schema.

tional database systems to store and evaluate queries or?. AnXPath Query Engine.
XML data.

The extended preorder numbering scheme [4] is an effi-

3. Aweb-based user interface.
The mapping of XML data to relational schema is accom-

structured relational data. The numbering scheme enge have generated two relational schemas that make best
codes the nesting structures of XML data in such a wayse of this numbering scheme.

that ancestor-descendantrelationships can be determined The xPath Query Engine allows XPath queries to be is-
constant time. Every XML node encoded in this way cansyed on the relational implementation of the mapping of
be stored in a uniform manner inside a relational database¢ data.

Universal access to the system is provided through a
web-based interface which allows users to visually interac
with the query engine and result set.

* This work was sponsored in part by National Science Fouodati
CAREER Award (11S-9876037), NSF Grant No. [1S-0100436, &tfsF
Research Infrastructure Program EIA-0080123.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VL DB Conference,
Berlin, Germany, 2003

2.1 Mapping XML Datato Relational Schemas

Mature relational technology can be a useful mechanism
for storing and querying XML data. Mapping of semi-
structured XML data to a highly structured relational sys-
tem can be accomplished by using the extended preorder

E_Table_1 E_Table_2 E_Table_n
Element Table | | Attribute Table Text Table Document Table Document_ID | | Document_ID Document_ID
D t ID | |D . ID | | D ID | | D _ID Order Order Order
Order Order Order Name Size Size LA Size
Size Size Size Depth Depth Depth
Tag_Name Tab_Name Depth Parent_ID Parent_ID Parent_ID
Dzt i FETGHILLID Attr_ID Attr_ID Attr_ID
Child_ID Parent_ID Next_ID = = =
Next_ID Next_ID Value
Attr_ID el A_Table_1 A Table 2 A_Table_n
Figure 1: Tables in Schema A (Primary keys in bold) Document ID| | Document D) | | Document 1D
Depth Depth Depth
numbering scheme. This numbering scheme provides a T PR it
method for encoding tree-formed data into integer pairs ir-
. Document Table All Node Table Text Table
respective of data content.
Document_ID D t_ID D _ID
Name Order Order
2.1.1 TheExtended Preorder Numbering Scheme Paant 1D Vol
Next_ID
The extended preorder numbering scheme [4] associates N
each node in an XML document with a pair of num-
bers, theextended preorder and therange of descendants Figure 2: Tables in Schema B (Primary keys in bold)
(<order, size>), which should satisfy the following con-))]
ditions: e For different schemas, what kind of indexes are

needed.

XISS/R requires five pieces of information for each
node stored in the system. They are the document ID, or-
der (also referred to as the node ID) and size of a node in
the numbering scheme, depth of a node in a document tree,
tag-name and text value of a node. In an effort to improve
. k efficiency in processing queries and during export of data,

ifcrleif(i)m preorder traversahrder (z) + size(x) < we also §tore the parent node ID, sibling node ID, first child
' ID and first attribute ID for each node.
For atree node, size(x) can be an arbitrary integer larger Utilizing the above information we have created two re-

than the total number of the current descendanis dhis |ational schemasSchema A and Schema B, that are best
allows future insertions to be accommodated gracefullysyited to implementing XISS/R.

The ancestor-descendant relationship can be determined in

constant time by examining these pairs of numbers. That iSschema A
for two given nodes andy of atreeT’, is an ancestor af
ifand only iforder(z) < order(y) < order(z)+size(z).

e For a tree nodey and its parentz, order(z) <
order(y) and order(y) + size(y) < order(z) +
size(z). In other words, interval drder(y),
order(y) + size(y)] is contained in interval
[order(z), order(z) + size(x)].

e For two sibling nodes: andy, if z is the predeces-

XISS/R divides nodes into three categories, element, at-
In a relational schema, these pairs can be stored in coﬁ[ibUte and text. Since the set of information that each type
junction with other node information and used as part ofOlc node requires to be described is different, this separa-

join conditions during query processing. Using this num-liOn saves space by storing only necessary fields. Schema
bering scheme, it is not necessary to attempt to use SQ , which is shown in Figure 1, separates nodes along these

statements to traverse tree structures in order to to psoced"®> and s defined as follows:

ancestor-descendant joins. This numbering scheme alsol. TheDocument Table consists of theNane of a docu-
enables the XISS/R system to store nodes in a uniform for- ~ mentand a unique numeridabcunent _I D.

mat as tuples inside relational tables without losing XML 2. TheElement Table stores all element nodes.

document structural information. 3. The Attribute Table stores attribute nodes. The
Val ue stores the attribute value.
2.1.2 Relational Schema 4. The Text Table stores text nodes (not text values)

The numbering scheme provides a unified way to store the ~ Within the systemVal ue stores the actual text.
structural relationships of XML data. However, there are In this schema, a Document Table is a simple way to
a number of options for storing other necessary data fronseparate the document name from the element, attribute,
XML documents alongside such structure data. We investiand text relations. The element, attribute and text rela-
gate several key issues that can affect the storage and queigns store a reference to the numerical ID of the docu-
performance: ment for each node. In the Element, Attribute, and Text
tables,Or der andDocunent I D uniquely identify any
node within the system. Since all attribute nodes have a
corresponding text value (or empty) string, this value is
stored with the attribute node, further reducing query time

e How to store element and attribute nodes.
e How to store tag name values.

e How to store value string information for text and at-
tribute nodes.

Schema B \ User Interface |

T

Schema B, which is shown in Figure 2, goes further than (. ‘
Schema A in separating nodes into different tables. Like ey o o
Schema A, Schema B separates nodes by their type (ele-
ment, attribute or text). In addition to this, Schema B hor- ”l /<\\ Dﬁ:g?:r R
izontally partitions element and attribute by tag-name. An SN ;uery Cached ogﬁ;ed £
element or attribute table is created for each unique tag- XML Transformer [« *[Pattem |Pointer v
name. All nodes of the same type, from all stored docu- - 3 5
ments, with the same tag name are stored in the same table. 8 0/\ ‘ S
For instance, all element nodes with the tag-n#@& are T saL Cache E
stored in one table. This strategy serves to reduce over- Loader | | Generator Manager [~ | X
all query time by making SQL statements simpler and over ‘ - g‘\
smaller tables than Schema A. Schema B also containsa [— , +
table that has information for reconstruction of XML doc- | MSVStem
uments. { Database

‘ i i Server

2.2 XPath Query Engine

The XPath Query Engine (Figure 3), which is located be-
tween the user interface and the database server,isthecore elemtab et0, attr_tab atO
component of the XISS/R system. The query engine ac\WHERE
cepts XPath queries and generates SQL statements to send €t 0. NAVE = " nedi a’ and
to the database server. Query results from the database @at0. NAVE = 'nedia-type’ and
server are then formated and forwarded to the user inter- ~ at0- VALUE = "image’ and
face by the query engine. at0.DID = et0.DID and

Upon receiving an XPath query, ti@@uery Parser first at0. PARENT_ID = et0.N D

parses the query and translates it into an interme_diate treé The database server processes the SQL query and re-
structured format. For example, the quéfyB] / Cwillbe ;s the result to the XPath Query Engine, whBssult
translated into a tree with nodeas the root, an@ andC congryctor formats the result and sends it to the user in-
as two children of\. terface for display. The result is also sent to tbache

This tree-structured intermediary is then simplified by Manager, which makes a caching decision based on infor-
theQuery Transformer based on current cache information ation such as result set and data size, query pattern or
in the Cache Directory. The Cache Directory stores result sub-pattern frequency, query processing time, etc.

information from previous queries. Each entry in the direc-
tory consists of a query pattern in tree-structured interme
diate format, and a pointer to it's associated result set.

The Query Transformer matches the current query tree The Web-Based Interface allows users to issue XPath
against patterns in the cache directory. If a match is foundgueries to the XISS/R system from any Internet termi-
the matched part in the query tree will be replaced by anal viahtt p:// xi ss. cs. ari zona. edu. It accepts
super node. This super node is similar to a normal nodeueries through the HTML form construct, sends these
except that when parsed into SQL, tB@L Generator will gueries to the XPath query engine and receives results in
evaluate it based on cached results. For example, if theeturn. Users can choose the amount of results displayed at
result of the quenA[B] is in the cache, the subtree repre- one time and then page through the result set. In addition
sentingA[B] can be replaced by a super node representingp the requested portion of the result set, the web query
cached results. The query is thus simplified into a two-nodénterface also returns usage statistics to users such as the
query tree. In addition, other optimizations can be imple-XPath query, the translated SQL query(ies), execution time
mented inside th@uery Transformer. for each query, and total time spent server side.

The simplified query tree is translated into SQL An example of the query web interface is shown in Fig-
statements by theSQL Translator and communicated yre 4. Users can choose the dataset and schema to query.
to the database server. For example, the quenthe xpathqueryand the desired number of results per page
medi af @redi a-type="image"] will be translated ;0 5ot 16 the web server, which interacts with the XPath
into the following SQL statement when using Schema A: X . .

guery engine to process the query. The appropriate portion

SELECT of the result set, received from the web server is displayed

et 0. DI D as Docunent, etO.N D as Node ID in an additional frame. Additional queries can be issued at
FROM any time.

Figure 3: XISS/R System Architecture

2.3 Web-Based User Interface

Unlike a tag name, an XML dataset can and of-
D - ten contains large amounts of distinct value-string in-
O @ Lo frrom= Gr= @ formation. In worst case scenario, this can be
Query the Shaliespeare data set i Schenta & = “ 2 x (the number of element nodes) — 1 +
the number of attribute nodes ". With this high percent-

Elle Edit Yew Favorites Toals Help "

Q) sack -

Submit Query

s o age of distinct textual values, the amount of space saved
Query Interface
Tote Reculls por pege 6| is trivial compared to the extra time it takes to access this
sz Xt Quer: 3 data. For this reason, the value string information is store

e

directly in the attribute and text tables.

In addition to the tables in the schemas described be-
fore, we also utilized database indexes to accelerate query
processing. There are B+-tree indexes on all the primary
keys of tables, name, value and document text informa-
tion,Par ent _| DandDocument _|I Dof all text nodes and
Order, Si ze andDocunent _I Dfor all nodes.

Sql Query(s) Generated:
SELECT

et]. DID as Docurnent, etl HID as Hode 1D
FROM

eletn_tab et eletn_tab etl

‘WHERE

etd MAME = FLAY and

etl MAME = "ACT" and

t0.DID = et] DID and

et NID = et] NID and

etll MID +et0 SIZE_NUR == et] NID and
etl DEFTH + 1 =etl DEFTH

Displaying Results 1 through 5:
DOCUMENT NODE_D
7
1394
3740
5374
7103

3 Demonstration

In the XISS/R demonstration, an Apache Web server and a
MySQL database server will be available to serve requests
from the web user interface. Query processing is provided
on Schema A and B with several datasets. We will demon-
strate our implementation of the XISS/R system and justify
the choices we made in designing the system. The audience
will be able to interact with the system during the demon-
stration. Users can choose different query combinations to
highlight performance differences between differentrela
tional schema. In addition, performance figures and statis-

Our current implementation of XISS/R uses MySQL puttics for large scale testing will be exhibited to show the
has the capability to use any commercial database systeridvantages of the XISS/R system.
Documents are parsed and loaded into the database by a
program that uses MySQL's C interface. This loader usedREferences
the LibXML [6] library to access XML documents such [1] Philip Bohannon, Juliana Freire, Prasan Roy, and Jrme Si
that their structural information can be encoded with the mon. From xml schema to relations: A cost-based approach
extended preorder numbering scheme. to xml storage. IrProceedings of the 18th Inter. Conference

The web-based interface is implemented with Apache on Data Engineering, San Jose, California, February 2002.
1.3.24 compiled with PHP 4.1.12. The XPath Query En-[2]
gine is implemented by PHP scripts that communicate with
the RDBMS in use.

Currently the web interface accepts queries expressed
in XPATH 2.0 Abbreviated syntax. The XPath operators,[3]
a//b, alb], a/b, a[@b ="c"] anda@b are supported, and

Statistics:

Total Nuraher of Results = 185

Total Tirae = 2. 2009029626846 seconds

Tixae for Query) = 0.033360004423049 seconds

< # | Total Query Tire = 0.033360004425049 seconds (4

Figure 4: XISS Query Interface Example

2.4 Implementation

Alin Deutsch, Mary Fernandez, and Dan Suciu. Storing
semistructured data with STORED. Rroceedings of the
1999 ACM-S GMOD Conference, pages 431-442, Philadel-
phia, PA, June 1999.

Daniela Florescu and Donald Kossmann. Storing and gquery
ing xml data using an rdmbs.EEE Data Engineering Bul-

can be combined as needed to address stored XML docu-
ments. As per the XPath specifications result sets are cony]
posed of unique pointers to addressed nodes.

We created several schemas to determine whether to
store elements in a large node table or store them in sejs]
arate node tables divided by node name. The overall trend
in performance was that schemas using horizontal parti-
tioning were faster. As for whether to store tag names in
the node tables or store them in a separate tag name table,
we found that since the number of distinct elements and atf6]
tributes is usually small, the join time between a tag name
table and node tables is inconsequential compared to the
common total query time.

letin, 22(3):27—34, 1999.

Quanzhong Li and Bongki Moon. Indexing and querying xml
data for regular path expressions. Rroceedings of the 27th
VLDB Conference, Rome, Italy, September 2001.

Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayaglan-
mugasundaram, Eugene J. Shekita, and Chun Zhang. Stor-
ing and querying ordered xml using a relational database sys
tem. InProceedings of the 2002 ACM-S GMOD Conference,
Madison, Wisconsin, USA, Jun 2002.

XMLsoft. The XML C library for Gnome. http://xmlsoft.-
org/, March 2003.

