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ABSTRACT
A spatial distance join is a relatively new type of opera-
tion introduced for spatial and multimedia database appli-
cations. Additional requirements for ranking and stopping
cardinality are often combined with the spatial distance join
in on-line query processing or internet search environments.
These requirements pose new challenges as well as oppor-
tunities for more eÆcient processing of spatial distance join
queries. In this paper, we �rst present an eÆcient k-distance
join algorithm that uses spatial indexes such as R-trees. Bi-
directional node expansion and plane-sweeping techniques
are used for fast pruning of distant pairs, and the plane-
sweeping is further optimized by novel strategies for select-
ing a sweeping axis and direction. Furthermore, we propose
adaptive multi-stage algorithms for k-distance join and in-
cremental distance join operations. Our performance study
shows that the proposed adaptive multi-stage algorithms
outperform previous work by up to an order of magnitude for
both k-distance join and incremental distance join queries,
under various operational conditions.

1. Introduction
A spatial distance join operation was recently introduced

to spatial databases to associate one or more sets of spatial
data by distances between them [13]. A distance is usually
de�ned in terms of spatial attributes, but it can be de�ned in
many di�erent ways according to various application speci�c
requirements. In multimedia and image database applica-
tions, for example, other metrics such as a similarity dis-
tance function can be used to measure a distance between
two objects in a feature space.
In on-line decision support and internet search environ-

ments, it is quite common to pose a query that �nds the
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best k matches or reports the results incrementally in the de-
creasing order of well-matchedness. This type of operations
allow users to interact with database systems more e�ec-
tively and focus on the \best" answers. Since users can say
\It is enough already" at any time after obtaining the best
answers [8], the waste of system resources can be reduced
and thereby delivering the results to users more quickly.
This ranking requirement is often combined with a spatial

distance join query, and the ranking requirement provides a
new opportunity of optimization for spatial distance join
processing [9, 10]. For example, consider a query that re-
trieves the top k pairs (i.e., the nearest pairs) of hotels and
restaurants:

SELECT h.name, r.name

FROM Hotel h, Restaurant r

ORDER BY distance(h.location, r.location)

STOP AFTER k;

For a relatively small stopping cardinality k, the processing
time can be reduced signi�cantly by sorting only a fraction of
intermediate results enough to produce the k nearest pairs,
instead of sorting an entire set of intermediate results (i.e.,
a Cartesian product of hotels and restaurants).
A spatial distance join query with a stopping cardinality

can be formulated as follows:

�dist(r;s)<Dmax (R 1 S)

where dist(r; s) is a distance between two spatial objects
r 2 R and s 2 S, and Dmax is a cuto� distance that is
determined by a stopping cardinality k and the spatial at-
tribute values of two data sets R and S. It may then be
argued that a spatial distance join query can be processed
by a spatial join operation [1, 6, 7, 15, 16, 19] followed by a
sort operation. Speci�cally, if a Dmax value can be predict-
ed precisely for a given stopping cardinality k, we can use a
spatial join algorithm with a within predicate instead of an
intersect predicate to �nd the k nearest pairs of objects.
Then, a sort operation will be performed only on the k pairs
of objects.
In practice, however, it is almost impossible to estimate

an accurate Dmax value for a given stopping cardinality k,
and, to the best of our knowledge, no method for estimating
such a cuto� value has been reported in the literature. If
the Dmax value is overestimated, then the results from a
spatial join operation may contain too many candidate pairs,
which may cause a long delay in a subsequent stage to sort
all the candidate pairs. On the other hand, if the Dmax

value is underestimated, a spatial join operation may not
return a suÆcient number of object pairs. Then, the spatial
join operation should be repeated with a new estimate of
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Dmax, until k or more pairs are returned. This may cause a
signi�cant amount of waste in processing time and resources.
There is another reason that makes it impractical to ap-

ply a spatial join algorithm to spatial distance join queries.
A spatial join query is typically processed in two steps, �l-
ter and re�nement, as proposed in [18]. In a �lter step,
MBR approximations are used to �nd pairs of potentially
intersected spatial objects. Then, in a re�nement step, it is
guaranteed that all the quali�ed (i.e., actually intersected)
pairs can be produced from the results returned from the
�lter step.
In contrast, it is completely unreasonable to process a spa-

tial distance join query in two separate �lter and re�nement
steps, because of the fact that a �ltering process is based on
MBR approximations. A set of object pairs sorted by dis-
tances measured by MBR approximations does not re
ect a
true order based on actual representations. This is because,
for any two pairs of spatial objects hr1; s1i and hr2; s2i,
the fact that dist(MBR(r1);MBR(s1)) < dist(MBR(r2);
MBR(s2)) does not necessarily imply that dist(r1; s1) <
dist(r2; s2). Consequently, any processing done in the �lter
step will be of no use for �nding the k nearest object pairs.
In this paper, we propose new strategies for eÆciently pro-

cessing spatial distance join queries combined with ranking
requirements. The main contributions of the proposed solu-
tions are:

� New eÆcient methods are proposed to process dis-
tance join queries using spatial index structures such as
R-trees. Bi-directional node expansion and optimized
plane-sweep techniques are used for fast pruning of dis-
tant pairs, and the plane-sweep is further optimized by
novel strategies for selecting a sweeping axis and direc-
tion.

� Adaptive multi-stage algorithms are proposed to pro-
cess distance join queries in a way that the k nearest
pairs are returned incrementally. When a stopping
cardinality is not known a priori (e.g., in on-line query
processing environments or a complex query contain-
ing a distance join as a sub-query whose results need to
be pipelined to the next stage of the complex query),
the adaptive multi-stage algorithms can produce pairs
of objects in a stepwise manner.

� We provide a systematic approach for estimating the
maximum distance for a distance join query with a
stopping cardinality. This estimated distance allows
the adaptive multi-stage algorithms to avoid a slow
start problem, which may cause a substantial delay in
the query processing. This approach for estimating
the maximum distance also allows the size of memory
to be parameterized into a queue management scheme,
so that data movement between memory and disk can
be minimized.

The proposed algorithms achieve up to an order of magni-
tude performance improvement over previous work for both
k-distance join and incremental distance join queries, under
various operational conditions.
The rest of this paper is organized as follows. Section 2

surveys the background and related work on processing spa-
tial distance join queries. Major limitations of previous work
are also discussed in the section. In Section 3, we present
a new improved algorithm based on bi-directional expan-
sion and optimized plane-sweep techniques for k-distance
join queries. In Section 4, adaptive multi-stage algorithms
are presented for k-distance join and incremental distance

join queries. A queue management scheme parameterized
by memory capacity is also presented. Section 5 presents
the results of experimental evaluation of the proposed so-
lutions. Finally, Section 6 summarizes the contributions of
this paper and gives an outlook to future work.

2. Background and Previous Work
A spatial index structure R-tree and its variants [3, 5, 11]

have been widely used to eÆciently access multidimension-
al data { either spatial or point. Like other tree-structured
index structures, an R-tree index partitions a multidimen-
sional space by grouping objects in a hierarchical manner.
A subspace occupied by a tree node is always contained in
the subspace of its parent node. This hierarchy of spatial
containment between R-tree nodes is readily used by spatial
distance join algorithms as well as spatial join algorithms.

(a) Tree−Structured Spatial Index (b) Spatial Containment

r

r1 r1 r3
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s1 s2 s3

dist(r,s)r s
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r2

s1
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dist(r3,s2)
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Figure 1: Hierarchy of Spatial Containment of R-Tree Nodes

Suppose r and s are non-leaf nodes of two R-tree indexes
R and S, respectively, as in Figure 1. Then, the minimum
distance between r and s is always less than or equal to
the minimum distance between one of the child nodes of r
and one of the child nodes of s. Likewise, the maximum
distance between r and s is always greater than or equal to
the maximum distance between one of the child nodes of r
and one of the child nodes of s. This observation leads to
the following lemma.

Lemma 1. For two R-tree indexes R and S, if neither
r 2 R nor s 2 S is a root node, then

dist(r; s) � dist(parent(r); parent(s));

dist(r; s) � dist(r; parent(s)); (1)

dist(r; s) � dist(parent(r); s):

where dist(r; s) is the minimum distance between the MBR
representations of r and s.

Proof. From the observation above.

Lemma 1 allows us to limit the search space, while R-tree
indexes are traversed in a top-down manner to process a
spatial distance join query. For example, if a pair of non-
leaf nodes hr; si turn out to be too far from each other (or
their distance is over a certain threshold), then it is not
necessary to traverse further down the tree indexes below the
nodes r and s. Thus, this lemma provides the key leverage
to processing distance join queries eÆciently using R-tree
indexes.

2.1 Incremental andk-Distance Joins
During top-down traversals of R-tree indexes, it is desir-

able to store examined node pairs in a priority queue, where
the node pairs are kept in an increasing order of distances.
We call it a main queue as opposed to a distance queue we
will describe later. The main queue initially contains a pair
of the root nodes of two R-tree indexes. Each time a pair
of non-object nodes are retrieved from the main queue, the
child nodes of one node are paired up with the child nodes
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of the other to generate a new set of node pairs, which are
then inserted into the main queue. This process that we cal-
l node expansion is repeated until the main queue becomes
empty or until stopped by an interactive user. If an element
retrieved from the main queue is a pair of two objects, the
pair is returned immediately to the user as a query result.
This is how a spatial distance join query is processed incre-
mentally. Figure 2 depicts a typical framework of processing
an incremental distance join (IDJ) query using R-tree in-
dexes.

return as an answer

<root of R, root of S>
insert 

at beginning

Main Queue

newly generated pairs

a pair with 
minimum distance

NodeExpansion
      Module

if <object, object>

if non−<object, object>

Figure 2: Framework of Incremental Distance Join (IDJ)

A distance join query is often given with a stopping cardi-
nality k as in the \stop after" clause of the sample query in
Section 1. Since it is known a priori how many object pairs
need to be produced for a distance join query, this knowledge
can be exploited to improve the performance of the query
processing. Suppose a maximum of k nearest pairs of ob-
jects are to be retrieved by a query. One plausible approach
is to maintain k candidate pairs of objects during the entire
course of query processing. As they are the k nearest object
pairs known at each stage of query processing, any pair of
nodes (and any pair of their child nodes) whose distance is
longer than all of the k candidate pairs cannot be quali�ed
as a query result. Thus, we can use another priority queue
to store the k minimum distances, and use the queue to
avoid having to insert unquali�ed pairs into the main queue
during the node expansions. We call the priority queue a
distance queue. Figure 3 depicts a typical framework of pro-
cessing a k-distance join (KDJ) query using R-tree indexes
and both main and distance queues.
Both main and distance queues can be implemented by

heap structures. A main queue is normally implemented
as a min-heap, because the query results are produced in
an increasing order of distances. In contrast, a distance
queue should be implemented as a max-heap, as the cuto�
distance is determined by the maximum value among the k
distances stored in the distance queue at each stage of query
processing. Pruning node pairs by the distance queue was
shown to be very eÆcient from our experiments, especially
when k was rather small.

2.2 Previous Work
The distance join algorithms proposed in [13] are based on

uni-directional node expansions. When a pair of nodes hr; si
are retrieved from a main queue, either node r is paired up
with the child nodes of s, or node s is paired up with the
child nodes of r. None of the pairs are generated from a child
node of r and a child node of s. The advantage of the uni-
directional expansion is that the number of pairs generated
at each expansion step is limited to the fanout of an R-
tree index being traversed, and an explosion of the main
queue can be avoided. As is acknowledged by the authors

return as an answer

<root of R, root of S>
insert 

at beginning

Main Queue

newly generated pairs

a pair with 
minimum distance

if <object, object>

if non−<object, object>

NodeExpansion
      Module

remained pairs
Pruning
by Distance Queue

Figure 3: Framework of k-Distance Join (KDJ)

of the algorithms, however, the main disadvantage of this
approach is that the uni-directional expansion may lead to
each node being accessed from disk more than necessary.
And also, the uni-directional expansion requires pairing up
node r exhaustively with all the child nodes of node s or
vice versa.
For a spatial distance join query with a relatively small

stopping cardinality k, the use of a distance queue is an
e�ective means to prevent distant pairs from entering a main
queue. For a large k value, however, the distance queue
may not work well as an e�ective pruning tool, because the
cuto� value stored in the distance queue may remain too
high for a long duration. This may in turn lead to a long
delay particularly in the early stage of query processing.
For these reasons, the previous algorithms su�er from poor
performance for a k-distance join query with a large k and
an incremental distance join query, for which k is unknown
in advance.
Moreover, there is an important issue that was not ful-

ly addressed in [13]. A hybrid memory/disk technique was
proposed as a queue management scheme, which partitions
a queue based on the distance range. This technique keeps
a partition in the shortest distance range in memory, while
the rest of partitions are stored on disk. However, no mech-
anism was provided to determine a boundary distance value
between the partition in memory and the rest, which may
have a crucial impact on the performance of queue manage-
ment.
Several closely related studies for nearest neighbor queries

have been reported in the literature. Among those are near-
est neighbor search algorithms based on Voronoi cells [2, 4]
and branch and bound techniques [21], a nearest neighbor
search algorithm for ranking requirement [12], and multi-
step k-nearest neighbor search algorithms [14, 22].

3. Optimized Plane-Sweep for Fast Pruning
In this section, we propose a new distance join algorithm

B-KDJ (Bidirectional expanding k-Distance Join) using a
bi-directional node expansion, in an attempt to avoid redun-
dant accesses to R-tree nodes. As is pointed out in Section 2,
distance join algorithms based on an uni-directional expan-
sion require accessing an R-tree node more than those based
on bi-directional expansions. Under the bidirectional node
expansion, for a pair hr; si, each of the child nodes of r is
paired up with each of the child nodes of s. This is essential-
ly a Cartesian product, which may generate more redundant
pairs than the uni-directional expansion does. Nonetheless,
we will show B-KDJ algorithm can e�ectively avoid gen-
erating redundant pairs by a plane sweeping technique [20]
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and novel strategies for choosing an axis and a direction for
sweeping. The B-KDJ algorithm is described in Algorith-
m 1.

3.1 Bidirectional Node Expansion
Like the distance join algorithms proposed in [13], B-KDJ

algorithm uses qDmax from the distance queue QD as a cut-
o� value to examine node pairs. If a pair of nodes hr; si
removed from the main queue are a pair of objects, then
the object pair is returned as a query result. Otherwise, the
pair is expanded by the PlaneSweep procedure for further
processing.

Algorithm 1: B-KDJ: K-Distance Join Algorithm with
Bi-directional Expansion and Plane Sweep

1: set AnswerSet  an empty set;
2: set QM , QD  empty main and distance queues;
3: insert a pair hR:root; S:rooti into the main queue QM ;
4: while jAnswerSetj < k and QM 6= ; do
5: set c  dequeue(QM);
6: if c is an hobject; objecti then

AnswerSet  fcg [ AnswerSet;
7: else P laneSweep(c);

end

procedure PlaneSweep(hl; ri)
8: set L  sort axis(fchild nodes of lg); // by axis values.
9: set R  sort axis(fchild nodes of rg); // by axis values.

10: while L 6= ; and R 6= ; do
11: n an anchor node with the min axis value 2 L[R;
12: if n 2 L then
13: L L� fng; SweepPruning(n;R);

else
14: R R� fng; SweepPruning(n;L);

end
end

procedure SweepPruning(n; List)
15: for each m 2 List in an incr. order of axis value do
16: if axis distance(n;m) > qDmax then return;
17: if real distance(n;m) � qDmax then
18: insert hn;mi into QM ;
19: if hn;mi is an hobject; objecti then

insert real distance(n;m) into QD;
// qDmax is modi�ed.

end
end

Assume that a sweeping axis (i.e., x or y dimensional axis)
and a sweeping direction (i.e., forward or backward) are de-
termined, as we will describe in Sections 3.2 and 3.3. Then,
the child nodes of r and s are sorted by x or y coordinates
of one of the corners of their MBRs in an increasing or de-
creasing order, depending on the choice of sweeping axis and
sweeping direction. Each node encountered during a plane
sweep is selected as an anchor, and it is paired up with
child nodes in the other group. For example, in Figure 4,
a child node r1 of r is selected as an anchor, and the child
nodes s1; s2; s3 and s4 of s are examined for pairing, as they
are within qDmax distance from r1 along the sweeping axis
(lines 11-14 and line 16).
Since an axis distance between any pair hr; si is always

smaller than or equal to their real distance (i.e., axis dist-
ance(r; s) � real distance(r; s)), real distances are comput-
ed only for nodes whose axis distances from the anchor are
within the current qDmax value (line 17). Given that a real
distance is more expensive to compute than an axis distance,
it may yield non-trivial performance gain. Then, each pair

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

r4

r3

qDmax

Figure 4: Bidirectional Node Expansion with Plane Sweep

whose real distance is within qDmax is inserted into the main
queue QM (line 18). If it is a pair of objects, then update
the current qDmax value by inserting the real distance of the
object pair into the distance queue QD (line 19). 1

For a relatively small qDmax value and two sets of evenly
distributed spatial objects, the number of pairs for which
B-KDJ algorithm computes real distances and performs
queue management operations is expected to be O(jrj+jsj)
roughly. This justi�es the additional cost of sorting child n-
odes for plane-sweeping, because the overall cost of B-KDJ
algorithm would otherwise beO(jrj � jsj) by Cartesian prod-
ucts.

3.2 Sweeping Axis
We can improve B-KDJ algorithm one step further by

deciding the sweeping axis and direction on an individual
pair basis. Intuitively, if child nodes (or data objects) are
spread more widely along one dimension (say, x) than the
other dimensions, then the bi-directional node expansion is
likely to generate a smaller number of node pairs to compute
the real distances for by plane-sweeping along the dimension
x. This is because, when the nodes are more widely spread
along a sweeping axis, the chance that a pair of nodes are
within a qDmax distance along the sweeping axis is lower.
For a pair of parent nodes shown in Figure 5, as an ex-

ample, it would be better to choose y-axis as a sweeping
axis, as the child nodes are more widely spread along the
y-dimension. On the other hand, if x-axis is chosen as a
sweeping axis, no pair of the child nodes will be pruned by
x-axis distance comparison with qDmax, because the x-axis
distance between any pair of the child nodes is shorter than
the qDmax value.
Formally, we de�ne a new metric sweeping index as

follows, and we use the metric to determine which axis a
plane-sweep will be performed on. For a given pair hr; si
of R-tree nodes and a given qDmaxvalue, we can compute a
sweeping index for each dimension. Conceptually, a sweep-
ing index is a normalized estimation of the number of node

1 There are alternatives as to what pairs are to be inserted
into a distance queue: (1) any pairs encountered during node
expansions, or (2) pairs of objects only. If a pair of non-
object R-tree nodes is inserted into a distance queue, its
maximum distance should be inserted as well [13]. Since the
maximum distance tends to be larger than those of pairs of
objects, most of non-object pairs are inserted into a distance
queue only to be removed from the distance queue without
reducing qDmax value. Thus, we decide to follow the second
option.
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y−axis

x−axis

qDmax

qDmax

r

s

Figure 5: E�ect of Right Selection of the Sweeping Axis

pairs that we need to compute the real distances for.2

Sweeping Indexx =

Z jrj
x

0

Overlap(qDmax; r; t)

jsj
x

dt

+

Z jsj
x

0

Overlap(qDmax; s; t)

jrj
x

dt (2)

In the �rst integral term of the equation above, jrjx is the
side length of node r along the dimension x. The function
Overlap(qDmax; r; t) is a portion of the side length of s a-
long the dimension x, overlapped with a window of length
qDmax whose left end point is located at a point t within
jrjx (i.e., 0 � t � jrjx). (See the left diagram in Figure 6.)
Thus, Overlap(qDmax; r; t)=jsjx represents a fraction of s's
child nodes intersected with a window [t; t + qDmax]. The
value of the function varies as the window moves along the
dimension x from [0,qDmax] to [jrjx; jrjx + qDmax]. There-
fore, the �rst integral term represents a relative estimation of
the number of s's child nodes encountered during the plane-
sweeps performed for all the child nodes of r. The second
integral term is symmetric with the �rst integral, and an
identical description can be o�ered by exchanging r and s.

|s|x

|r|x

t

|r|x qDmax+ −

t

|s|x

|r|x
0

qDmax
window

qDmax−
2

qDmax−( )
2

Overlap

Overlap

Figure 6: Sweeping Index

A smaller sweeping index indicates that the bi-directional
expansion needs to compute real distances for a smaller
number of nodes pairs. For the reason, B-KDJ algorith-
m chooses a dimension with the minimum sweeping index
as a sweeping axis.
One thing we may be concerned about is the cost of com-

puting a sweeping index for each dimension. The sweeping
index may appear expensive to compute, as it includes t-
wo integral terms. For given qDmax, jrjx and jsjx values,
however, the sweeping index is reduced to a formula that
involves only a few simple arithmetic operations. Suppose
nodes r and s are not intersected along a dimension x, the

2 An actual number of node pairs for which we need to
compute the real distances would be computed by counting
the number of s's child nodes within qDmax axis distance
from each child node of r, counting the number of r's child
nodes within qDmax axis distance from each child node of s,
and then adding all the counts and dividing the count sum
by two. However, this process will be very expensive.

minimum x-axis distance between them is �, and node r
appears before node s in the plane-sweep direction along x-
axis. (Again, see the left diagram in Figure 6.) Then, the
second integral term of Equation (2) become zero, because
all the child nodes of r have already been swept when the
�rst child node of s is encountered. The �rst integral term
varies depending on the conditions among qDmax, jrjx and
jsj

x
values and the proximity (i.e., �) of nodes r and s a-

long a chosen dimension. Table 1 summaries the formulae of
the sweeping index for non-overlapping nodes r and s. The
right diagram in Figure 6 illustrates how we can compute
the �rst integral term and obtain a simple expression when
jsj

x
+ � � qDmax � jrjx + � is satis�ed.

If nodes r and s are intersected, both the integral terms of
Equation 2 become non-zero. By a similar reasoning, each
integral term is also transformed into a formula with only a
few simple arithmetic operations. Considering that each R-
tree node may contain hundreds of child nodes, it will be a
trivial cost to compute a sweeping index for each dimension,
while the performance gain by the sweeping axis selection is
expected to be signi�cant. This is empirically corroborated
by our experiments in Section 5.

3.3 Sweeping Direction
Once a sweeping axis is determined, a sweeping direction

can be chosen to be either a forward sweep or a backward
sweep. For a pair of nodes r and s, we can de�ne the forward
and backward sweeps as follows.

� A forward plane-sweep scans the child nodes of r and s
in an increasing order of coordinates along the chosen
sweeping axis.

� A backward plane-sweep scans the child nodes of r and
s in a decreasing order of coordinates along the chosen
sweeping axis.

Consider nodes r and s projected on a sweeping axis. The
projected images generate three consecutive closed intervals
on the sweeping axis, unless the projected images are com-
pletely overlapped. For example, if nodes r and s are inter-
sected as in Figure 7(a), an interval in the left is projected
from r, one in the middle from both r and s, and one in
the right from s. The interval in the middle may be pro-
jected from none of r and s, if r and s are separate as in
Figure 7(b). Both the intervals in the left and right may be
projected from the same node, if one node is contained in
the other as in Figure 7(c).

(a) intersected

r

s

r

s

(b) separated

r

s

(c) contained

Figure 7: Three intervals projected from two nodes r and s

However, it does not matter which node an interval is pro-
jected from, because the a sweeping direction is determined
solely on the relative length of the intervals in the left and
right. A sweeping direction is determined by comparing the
length of the left and right intervals: if the left projected
interval is shorter than the right one, then a forward direc-
tion is chosen. Otherwise, a backward direction is chosen.
By this strategy of choosing a sweeping direction, a pair of
nodes closer to each other are likely to be examined earlier
than those farther to each other. This in turn allows a pair
of closer nodes are inserted into the main queue (and the
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Condition The �rst integral term of Equation (2)

qDmax � � 0

� < qDmax � jrjx + �

8><
>:

(qDmax��)
2

2jsj
x

if qDmax � jsjx + �;

(qDmax��)
2

2jsj
x

�
jsj

x

2
otherwise.

qDmax � jrjx + �

8>><
>>:

1

2jsj
x

(jrj2
x
� (qDmax � jrjx � �)2) if jrj

x
� jsj

x
;

1

2jsj
x

(jrj2
x
� (qDmax � jrjx � �)2 � (jrj

x
� jsj

x
)2) if (qDmax � jrjx � �) � jsj

x
< jrj

x
;

jrj
x

if jsj
x
< (qDmax � jrjx � �):

Table 1: Sweeping index for non-overlapping r and s (� is the minimum distance between hr; si)

distance queue as well if they are an object pair), and helps
reduce the qDmax value more rapidly.
In summary, the sweeping axis selection improves the bi-

directional node expansion step by pruning more child node
pairs whose axis distances are larger than the qDmax, while,
the sweeping direction selection does by reducing the qDmax

value more rapidly.

4. Adaptive Multi-Stage Distance Join
In B-KDJ algorithm, qDmax value is initially set to an

in�nity and becomes smaller as the algorithm proceeds. The
adaptation of the qDmax value has a crucial impact on the
performance of B-KDJ algorithm, as qDmax is used as a
cuto� to prevent pairs of distant nodes from entering the
main queue. If the qDmax value approaches to the real Dmax

value slowly, the early stage of B-KDJ algorithm will be
delayed considerably for handling too many pairs of distant
nodes. Consequently, at the end of the algorithm processing,
the main queue may end up with a large number of distant
pairs whose insertions to the main queue were not necessary.
The performance e�ect of slow start is more pronounced for
a larger k, as the main queue and distance queue tend to
grow large for a large k, and thereby increasing the qDmax

value. From our experiments with k as high as 100,000, we
observed that more than 90 percent of execution time of k-
distance join algorithms was spent to produce the �rst one
percent (i.e., 1,000 pairs) of �nal query results.
In this section, we propose new adaptive multi-stage dis-

tance join algorithms AM-KDJ and AM-IDJ that miti-
gate the slow start problem by aggressive pruning and com-
pensation.

4.1 Adaptive Multi-Stagek-Distance Join
The slow start problem is essentially caused by a pruning

strategy using qDmax, whose value is dynamically updated
as tree indexes are traversed and therefore not under direct
control of the distance join algorithms. To circumvent this
problem, we introduce a new pruning measure eDmax, which
is an estimatedDmax value for a given k. The eDmax value is
set to an initial estimation at the beginning and adaptively
corrected during the algorithm processing. We will discuss
techniques for initial estimation and adaptive correction in
Section 4.3.
AM-KDJ algorithm is similar to B-KDJ algorithm in

that both the algorithms use a bi-directional node expan-
sion. However, unlike the single-stage B-KDJ algorithm,
where only qDmax is used for pruning, both qDmax and
eDmax are used as cuto� values for pruning distant pairs in
AM-KDJ algorithm. Speci�cally, in the aggressive pruning
stage (described in Algorithm 2),

� eDmax is used for pruning based on axis distances
for aggressive pruning and thereby limiting the size
of main and distance queues (line 22),

� qDmax is used for further pruning on real distances for
nodes whose axis distances are within eDmax, in the
same way as B-KDJ.

Algorithm 2: AM-KDJ: Adaptive Multi-Stage K-
Distance Join Algorithm (Aggressive Pruning)

1: set AnswerSet  an empty set;
2: set QM , QD, QC  empty queues ;
3: set eDmax  an initial estimated Dmax;
4: insert a pair hR:root; S:rooti to the main queue QM ;
5: while jAnswerSetj < k and QM 6= ; do
6: set c  dequeue(QM);
7: if c is an hobject; objecti then

AnswerSet  fcg [ AnswerSet;
else

8: if qDmax � eDmax then eDmax  qDmax;
9: if c:distance < eDmax then

reinsert c back into QM ;
break; // Terminate this stage.

end
10: AggressivePlaneSweep(c);
11: enqueue(QC, c);

end
end

12: if jAnswerSetj < k then execute Algorithm 3;

procedure AggressivePlaneSweep(hl; ri)
13: set L  sort axis(fchild nodes of lg); // by axis values.
14: set R  sort axis(fchild nodes of rg); // by axis values.
15: while L 6= ; and R 6= ; do
16: n an anchor node with the min axis value 2 L[R;
17: if n 2 L then
18: L L� fng; AggressiveSweepPruning(n;R);
19: n:compensate  a node in R with

the min axis value and not yet paired with n;
else

20: R R� fng; AggressiveSweepPruning(n;L);
21: n:compensate  a node in L with

the min axis value and not yet paired with n;
end

end

procedure AggressiveSweepPruning(n; List)
Same as the SweepPruning procedure in Algorithm 1
except line 16 replaced with the following:

22: if axis distance(n;m) > eDmax then return;

With a properly estimated eDmax value, AM-KDJ al-
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gorithm can prune a large number of distant pairs in the
�rst stage and avoid a signi�cant portion of delay due to
the slow start. However, if AM-KDJ algorithm becomes
too aggressive by choosing an underestimated eDmax value,
even close enough pairs may be discarded incorrectly. To
avoid any false dismissals, we introduce another queue called
compensation queue (QC). The compensation queue stores
every node pair retrieved from the main queue (line 11), if
it is not a pair of objects or all the child nodes of the pair
are examined by plane sweeping. It should also be noted
that qDmax but not eDmax is used for nodes whose axis dis-
tances are within eDmax. If eDmax values are used instead,
the compensation stage will become very costly in order to
keep track of an exhaustive set of pruned pairs and recover
quali�ed pairs from them. Using qDmax values also makes
the performance of AM-KDJ fairly insensitive to estimated
eDmax values.
For example, in Figure 8 (drawn from Figure 4), an an-

chor node r1 is paired up with nodes s1 and s2 but not
with s3 and s4 in the aggressive pruning stage, because on-
ly s1 and s2 are within eDmax from the anchor node r1.
Thus, AM-KDJ algorithm inserts only two pairs (hr1; s1i,
hr1; s2i) into a main queue, instead of all four pairs (hr1; s1i,
hr1; s2i, hr1; s3i, hr1; s4i) that would be enqueued by B-KDJ
algorithm. Then, the pair hr; si currently being expanded is
inserted into a compensation queue.

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

r4

r3

eDmax

remembered as r1.compensate

qDmax

Figure 8: Aggressive pruning with qDmax and eDmax

The aggressive pruning stage ends when one of the follow-
ing conditions is satis�ed: (1) the main queue becomes emp-
ty (line 5), (2) k or more query results have been returned
(line 5), or (3) the distance of a node pair retrieved from the
main queue becomes smaller than eDmax (line 9). When the
condition (2) is satis�ed, obviously it is not necessary to ex-
ecute the compensation stage of the AM-KDJ algorithm.
(An overestimated eDmax can also be detected by comparing
with qDmax value (line 8). In this case, instead of terminat-
ing the �rst stage, AM-KDJ behaves exactly the same as
B-KDJ algorithm by using qDmax alone as a cuto� value.)
When the condition (3) is satis�ed, eDmax must have been
underestimated and the compensation stage (described in
Algorithm 3) begins its processing by inserting all the pairs
stored in the compensation queue to the main queue.
In the compensation stage, the pairs in the main queue

are processed in a similar way as B-KDJ algorithm, but
there are two notable di�erences from B-KDJ algorithm.
First, the child nodes are not sorted again because they
have already been sorted in the �rst stage. Second, for the
pairs already expanded once in the �rst stage, only child

Algorithm 3: AM-KDJ: Adaptive Multi-Stage K-
Distance Join Algorithm (Compensation Stage)

23: insert all elements in QC into QM ;
24: while jAnswerSetj < k and QM 6= ; do
25: set c  dequeue(QM);
26: if c is an hobject; objecti then

AnswerSet  fcg [ AnswerSet;
27: else CompensatePlaneSweep(c);

end

procedure CompensatePlaneSweep(hl; ri)
28: L  fchild nodes of l sorted in Stage Oneg;
29: R  fchild nodes of r sorted in Stage Oneg;
30: while L 6= ; and R 6= ; do
31: n an anchor node with the min axis value 2 L[R;
32: if n 2 L then
33: L L� fng; R0  fnodes in R not paired with

n in Stage Oneg;
34: SweepPruning(n;R0);

else
35: R R� fng; L0  fnodes in L not paired with

n in the Stage One g;
36: SweepPruning(n;L0);

end
end

pairs not examined in the �rst stage are processed by plane
sweeping. This is feasible by bookkeeping done in the �rst
stage (lines 19 and 21). For these reasons, the cost of the
compensating stage is not considerable compared with the
cost of restarting the algorithm. In summary, AM-KDJ
algorithm uses eDmax to avoid the slow start problem in the
aggressive pruning stage and speeds up the query processing.

4.2 Adaptive Multi-stage Incremental Distance Join
Consider on-line query processing and internet database

search environments, where users interact with database sys-
tems in a way the number of required matches can be deter-
mined interactively or changed at any point of query process-
ing. Consider also a complex query that pipelines the results
from a spatial distance join to a �lter stage. Under these
circumstances, the number of pairs (k) that should be re-
turned from a distance join is not known a priori, and hence
a k-distance join algorithm proposed in [13] and B-KDJ
algorithm presented in Section 3 cannot be used directly.
An important advantage ofAM-KDJ algorithm proposed

in the previous section is that AM-KDJ algorithm can be
extended to an incremental algorithm (we call AM-IDJ)
to support the interactive applications described above. The
main di�erence betweenAM-KDJ andAM-IDJ algorithm-
s is that AM-IDJ does not maintain a distance queue. This
is because it is not feasible to keep an unknown number of
distances in a distance queue, due to the lack of a priori
knowledge about k, Thus, AM-IDJ algorithm uses eDmax

alone as a cuto� value for pruning distant pairs, because
qDmax would be drawn only from a distance queue.
Without qDmax, AM-IDJ works as a stepwise incremen-

tal algorithm. First, AM-IDJ starts by determining an ini-
tial value k1 and estimating an initial eDmax1 for k1. Then,
it performs the same way as the �rst stage of AM-KDJ
algorithm without qDmax. However, the �rst stage may ter-
minates before producing enough object pairs (i.e., less than
k1), because AM-IDJ does not use qDmax as a cuto� val-
ue. If that happens, AM-IDJ algorithm estimates eDmax2

value for k2 (k2 > k1) and initiates a compensation stage.
Even when a suÆcient number of object pairs have been

returned from the �rst stage, users may request more an-

349



swers. Then, AM-IDJ initiates a compensation stage by
determining k2 and estimating a new eDmax2 accordingly.
As shown in Figure 9 (drawn from Figure 4), the compen-
sation stage can initiate another compensation stage at the
end of its processing, by choosing k3 and eDmax3. This pro-
cess continues until users stop requesting more answers. In
this way, AM-IDJ algorithm can be used to produce query
results incrementally without limiting the maximum number
of pairs in advance.

r1

r2s1

s2

s3

s4

s5

s6

sweeping dimension

s7

eDmax1

eDmax2

eDmax3

r4

r3

(1) (2) (3)

(1) : covered in FirstStage(k1, eDmax1)
(2) : covered in CompensatingStage(k2, eDmax2)
(3) : covered in CompensatingStage(k3, eDmax3)

Figure 9: Adaptive Multi-Stage Incremental Distance Join

4.3 Estimating the Maximum Distance (eDmax)
Both AM-KDJ and AM-IDJ algorithms process a dis-

tance join query based on an estimated cuto� value eDmax.
Thus, there should be a way to obtain an initial estimate and
correct the estimate adaptively as the algorithms proceed.
Assuming data sets are uniformly distributed, we provide
mechanisms to choose an initial estimate of eDmax, and to
adaptively correct it.
If the distribution of a data set is skewed, then a larger

number of close pairs can be found in a smaller dense region
of the data space. We expect that the formulae given in this
section tend to overestimate eDmax value for non-uniformly
distributed data sets, especially when a stopping cardinality
k is far smaller than the number of all pairs of objects (i.e.,
k � jRj � jSj). This was corroborated by our experiments
as described in Section 5.4.

4.3.1 Initial estimation
Let jRj and jSj be the number of data objects in sets R

and S, respectively. Then, the number of data objects in S
within a distance d from a data object in R is approximated

by jSj � ��d2

area(R\S)
. Therefore, the total number of object

pairs (k) within a distance d is given by

k = jRj � jSj �
� � d2

area(R \ S)
:

For a given k value as the number of requested query results,
an initial estimation of eDmax can be obtained from the
above equation as follows.

eDmax =
p
k � � (where � =

area(R \ S)

� � jRj � jSj
): (3)

4.3.2 Adaptive Correction of Estimated DistanceeDmax

The performance of AM-KDJ and AM-IDJ algorithms
can be further improved by adaptively adjusting the value
of eDmax at runtime. Adaptive correction of eDmax can
be done at any point of query processing by estimating a
new eDmax from the number of object pairs k0 (k0 < k)
obtained up to the point and the real distance of the k0-th
object pair, Dmax(k0). Speci�cally, the new estimate eDmax

0

can be computed from Equation (3) as

eDmax
0 =
q
Dmax

2
(k0)

+ (k � k0)� (4)

by arithmetic correction, or as

eDmax
0 = Dmax(k0) �

p
k=k0 (5)

by geometric correction if Dmax(k0) 6= 0. In practice, we
propose computing eDmax

0 in both ways, and then choose
the minimum if the query processing needs to be err on
the aggressive side. Otherwise, the maximum is chosen as
eDmax

0.
Note that the new estimate eDmax

0 can sometimes grow
beyond the previous estimate. If this happens, some pairs
whose distances are larger than the previous estimate but s-
maller than the new estimate could have already been pruned
and will never be examined in the current processing stage
under the new estimate. Thus, to guarantee the correctness
of the distance join, the algorithm should initiate a compen-
sation stage, as soon as a pair whose distance is smaller than
the smallest eDmax is dequeued from the main queue.

4.4 Queue Management
EÆcient queue management is one of the key components

of the distance join algorithms proposed in this paper. Each
of the B-KDJ, AM-KDJ, and AM-IDJ algorithms relies
on the use of one or more priority queues for query process-
ing. In particular, the main queue (QM ) is heavily used by
all of the proposed algorithms, and its performance impact
is signi�cant. In the worst case, the main queue can grow
as large as the product of all objects of two R-tree index-
es. That is, the size of QM is in O(jRobj j � jSobj j), where
jRobj j and jSobj j are the number of all objects in R and S,
respectively. Thus, it is not always feasible to store the main
queue in memory.
It was reported in [13] that a simple memory-based imple-

mentation might slow down query processing severely, due to
excessive virtual memory thrashing. A hybrid memory/disk
scheme [13] and a technique based on range partitioning [9]
have been proposed to improve queue management and to
avoid wasted sorting I/O operations. We adopt a similar
scheme for queue management, which partitions a queue by
range based on distances of pairs. A partition in the shortest
distance range is kept in memory as a heap structure, while
the rest of partitions are stored on disk as merely unsorted
piles.
When the in-memory heap becomes full, it is split into two

parts, and then one in the longer distance range is moved to
disk as a new segment. When the in-memory heap becomes
empty, a disk-resident segment in the shortest distance range
or a part of the segment is swapped in to memory to �ll up
the in-memory heap. Each of the split and swap-in oper-
ations requires O(n log n) computational cost for a heap of
n elements as well as I/O cost for reading and writing a
segment. Thus, it is important to minimize the required
number of those operations, which largely depends on the
partition boundary values between the in-memory heap and
the �rst disk-resident segment, and between those consec-
utive segments. However, as it is impossible to predict an

350



exact Dmax value for a given k, so is it diÆcult to determine
optimal distance values as segment boundaries.
To address this issue, we use Equation (3) to determine

the boundary distance values. Suppose n is the number of el-
ements that can be stored in an in-memory heap. Then, the
boundary value between the in-memory heap and the �rst
disk-resident segment is given by

p
n� �, and the bound-

ary value between the �rst and second segments is given byp
(2� n)� �, and so on.
In addition to a main queue, multi-stage algorithms AM-

KDJ and AM-IDJ use a compensation queue (QC) in the
compensation stage. Unlike the main queue, a compensa-
tion queue does not store any pair of objects. In other words,
a compensation queue can store pairs of non-object R-tree
nodes only. Thus, the size of QC is in O(jRnodej � jSnodej),
where jRnodej and jSnodej are the number of nodes (both in-
ternal and leaf nodes) in R and S, respectively. This is a sig-
ni�cantly lower upper-bound than a main queue has. We al-
so observed from our experiments that compensation queues
were several orders of magnitude smaller than main queues.
As for a distance queue used by B-KDJ and AM-KDJ al-
gorithms, its size is always bounded by a given k value. For
these reasons, under most circumstances, we assume either a
compensation queue and a distance queue �ts in memory. If
any of these queues outgrows memory, the same partitioning
technique used for a main queue will be applied.

5. Performance Evaluation
In this section, we evaluate the proposed algorithms em-

pirically and compare with previous work. In particular,
the proposed B-KDJ, AM-KDJ and AM-IDJ algorithm-
s were compared with Hjaltason and Samet's k-distance and
incremental distance join algorithms (hereinafter denoted
as HS -KDJ and HS -IDJ, respectively) for k-distance join
(KDJ) and incremental distance join (IDJ) queries. We
also include the performance of an R-tree based spatial join
algorithm [7] combined with a sort operation (denoted as
SJ -SORT) in most of the experiments. For each distance
join query, a spatial join operation was performed with a real
Dmaxvalue to generate the k nearest pairs. Then, an exter-
nal sort operation was performed to return the query results
in an increasing order of distances. Note that we made a fa-
vorable assumption for SJ -SORT that a real Dmax value
was known a priori.

5.1 Experimental Settings
Experiments were performed on a Sun Ultrasparc-II work-

station running on Solaris 2.7. This workstation has 256
MBytes of memory and 9 GBytes of disk storage (Seagate
ST39140A) with Ultra 10 EIDE interface. The disk is local-
ly attached to the workstation and used to store databases,
queues and any temporary results. We used the direct I/O
feature of Solaris for all the experiments to avoid operating
system's cache e�ects, and the average disk access band-
width was about 0.5 MBytes/sec for random accesses and
about 5 MBytes/sec for sequential accesses.
Data sets To evaluate distance join algorithms, we

used real-world data sets in TIGER/Line97 from the U.S.
Bureau of Census [17]. The particular data sets we used
were 633,461 streets and 189,642 hydrographic objects from
the Arizona state. Throughout the entire set of experiments,
the same page size of 4 KBytes was used for disk I/O and
R*-tree [3] nodes.
Metrics We measured the performance of various algo-

rithms based on the following metrics to compare the algo-
rithms in di�erent aspects such as computational cost and

I/O cost.

1. number of distance computations: The cost of com-
puting distances between pairs of nodes (or objects)
constitutes a signi�cant portion of the computation-
al cost of a distance join operation. Thus, the total
number of distance computations required by a dis-
tance join algorithm provides a direct indication of its
computational performance.

2. number of queue insertions: The task of managing a
main queue is largely I/O intensive as well as CPU in-
tensive. Thus, the total number of insertions to a main
queue required by a distance join algorithm provides a
reasonable indication of its I/O performance, because
insertions are much more frequent than deletions.

3. response time: Actual query response times were mea-
sured for overall performance of distance join algo-
rithms.

5.2 Evaluation ofk-Distance Joins

In this set of experiments, we varied a stopping cardi-
nality k from 10 to 100,000 to compare the performance of
HS -KDJ, B-KDJ and AM-KDJ algorithms. The sizes of
in-memory portion of a main queue and R-tree bu�er were
�xed to 512 KBytes. For AM-KDJ algorithm, we used E-
quation (3) to estimate eDmax values, and we observed a
tendency for eDmax values to be overestimated with respect
to real Dmax values. For example, for k = 100; 000, eDmax

was about 2.3 times larger than a real Dmax.

Figure 10(a) shows that both B-KDJ and AM-KDJ
reduced the number of distance computations signi�cant-
ly. The numbers of distance computations required by the
algorithms were smaller than those required by HS -KDJ al-
gorithm by up to two orders of magnitude. AM-KDJ was
almost identical to SJ -SORT by this metric. This demon-
strates that the optimized plane-sweep method was very ef-
fective in pruning distant pairs generated by bi-directional
expansions. On the other hand, HS -KDJ algorithm exam-
ines all possible pairs exhaustively in uni-directional expan-
sions.

In Figure 10(b), Both B-KDJ and AM-KDJ achieved
signi�cant reductions in queue insertions for all k values.
AM-KDJ was always better than B-KDJ particularly for
large k values. This result con�rms our conjecture that the
optimized plane-sweep method can prevent an explosion of
a main queue that would be caused by bi-directional node
expansions without the optimized plane-sweep.

As Figure 10(c) shows, B-KDJ and AM-KDJ outper-
formed HS -KDJ by a factor of two to three in response
time. For small k values, both B-KDJ and AM-KDJ
were comparable with SJ -SORT. For large k values, the
response time of AM-KDJ was within about 80 percent
above that of SJ -SORT.

Table 2 compares the number of R-tree nodes fetched from
disk by each algorithm. For large k values, the proposed
B-KDJ and AM-KDJ algorithms based on bi-directional
node expansions require a far smaller number of R-tree node
accesses than HS -KDJ algorithm, which is based on uni-
directional node expansions. The numbers in parentheses
represent the number of R-tree nodes that would be fetched
from disk without any bu�er pages alloted for R-trees.
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Figure 10: Performance k-Distance Joins

KDJ Stopping cardinality k
Algorithms 100 1,000 10,000 100,000

4,039 4,392 5,836 13,958
HS-KDJ (186,403) (186,801) (188,354) (197,113)

4,355 4,367 4,381 4,555
B-KDJ (12,660) (12,672) (12,688) (12,916)

4,355 4,367 4,381 4,555
AM-KDJ (12,660) (12,672) (12,688) 12,916)

4,190 4,193 4,197 4,219
SJ -SORT (12,660) (12,672) (12,688) (12,916)

Table 2: No. of R-tree Node Accesses for k-Distance Joins

5.3 Impact of Optimized Plane-Sweep
To further analyze the performance impacts of the opti-

mized plane-sweep method proposed in Section 3, we mea-
sured the performance of B-KDJ with the optimization
turned o�. Speci�cally, a sweeping axis and direction were
�xed to x-axis and forward direction, for B-KDJ with the
optimization turned o�. As Figure 11 shows, the optimized
plane-sweep alone reduced the number of required axis and
real distance computations by up to 20 percent.
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Figure 11: Improvements by Optimized Plane Sweep

5.4 Evaluation of Incremental Distance Joins
As in the previous section, we varied a stopping cardinal-

ity k from 10 to 100,000 to compare the performance of in-
cremental distance join algorithms HS -IDJ and AM-IDJ.
Like the previous experiments, the sizes of in-memory por-
tion of a main queue and R-tree bu�er were �xed to 512
KBytes.

As Figures 12(a) and 12(b) show, 75 to 98 percent of dis-
tance computations and queue insertions required by
HS -IDJ algorithm were eliminated by AM-IDJ algorithm.
The signi�cant improvement in these two metrics in turn led
to improvement in response time by an order of magnitude
in Figure 12(c). Like AM-KDJ algorithm, Equation (3)
was used to estimate eDmax values for AM-IDJ algorithm.

5.5 Impact of Memory Size
In this set of experiments, we examined the performance

impact of memory constraint of queue management and R-
tree bu�ers. The sizes of in-memory portion of a main
queue and R-tree bu�er were varied from 64 KBytes to
1024 KBytes. We measured the response time of HS -KDJ,
B-KDJ and AM-KDJ algorithms for a �xed stopping car-
dinality k = 100; 000. As Figure 13 shows, the response
time of all four algorithms improved as the size of avail-
able memory increased. Moreover, the proposed B-KDJ
and AM-KDJ algorithms showed consistently better per-
formance than HS -KDJ all over the examined range of
memory size.
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Figure 13: Performance Impact of Memory Size

5.6 Impact of eDmax Estimation on AM-KDJ Per-
formance

We designed a set of experiments to characterize the per-
formance of AM-KDJ algorithm with respect to the ac-
curacy of estimated eDmax values. Instead of using Equa-
tion (3) to estimate eDmax, we varied the eDmax value from
0:1 � Dmax to 10 � Dmax. Recall that Dmax is a real dis-
tance between the k-th nearest pair of objects. Again, we
�xed a stopping cardinality k to 100,000, and the sizes of
in-memory portion of a main queue and R-tree bu�er were
�xed to 512 KBytes.
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Figure 12: Performance of Incremental Distance Joins

When eDmax is overestimated (eDmax > Dmax), the com-
pensation stage of AM-KDJ algorithm is not necessary, be-
cause all the k nearest pairs will be produced in the �rst (ag-
gressive pruning) stage. Even when eDmax is overestimated,
AM-KDJ guarantees that eDmax is always smaller than or
equal to qDmax (obtained from a distance queue) through-
out the �rst stage. Thus, AM-KDJ always requires no
more distance computation and queue insertion operations
than B-KDJ algorithm does.
On the other hand, if eDmax is underestimated (eDmax <
Dmax), the node pairs in the compensation queue will be
revisited in the compensation stage. Thus, the cost of tree
traversals and queue management will increase, but it will
be bounded by twice the cost of B-KDJ algorithm. As dis-
cussed in Section 4.1, for a pair already expanded once in the
�rst stage, only child pairs not examined in the �rst stage
are paired up in the compensation stage and thereby wasting
no time for redundant work. The value of qDmax is likely
to become quite close to a real Dmax value in the compen-
sation stage. So, AM-KDJ algorithm usually prunes dis-
tant pairs much more eÆciently in the compensation stage
than B-KDJ algorithm would do in a single stage. There-
fore, AM-KDJ outperforms the k-distance join algorithms
HS -KDJ and B-KDJ, despite the additional cost of com-
pensation stage.
Figure 14 shows that as eDmax approaches to a real Dmax

value, the performance of AM-KDJ improves consistent-
ly in all three metrics. When eDmax increases far beyond
the real Dmax value, the performance of AM-KDJ con-
verges to that of B-KDJ algorithm. Importantly, however,
AM-KDJ always outperformed B-KDJ, not to mention
HS -KDJ, with eDmax in a wide spectrum of estimated val-
ue range.
We have not measured the cost of compensation queue

management. A compensation queue contains pairs of non-
object R-tree nodes. During the �rst (aggressive pruning)
stage of AM-KDJ algorithm, The number of pruned pairs
is far larger than the number of non-object pairs inserted
into a compensation queue. In most of our experiments, the
size of a compensation queue was less than 0.5 percent of the
size of a main queue. Thus, the additional cost required for
the compensation queue was almost negligible. This is one of
the reasons why AM-KDJ algorithm always outperformed
B-KDJ, which does not need a compensation queue.

5.7 Stepwise Incremental Execution ofAM-IDJ

Incremental distance join algorithms do not require a p-
reset stopping cardinality k. Thus, in this set of experi-
ments, we simulated a situation where users repeatedly re-
quested a set of 10,000 nearest pairs at a time until a total
of 100,000 nearest pairs were generated. Incremental algo-

rithms HS -IDJ and AM-IDJ each were executed once in a
single experiment run, until a total of 100,000 nearest pairs
were generated. The sizes of in-memory portion of a main
queue and R-tree bu�er were �xed to 512 KBytes both for
HS -IDJ and AM-IDJ.
On the other hand, since SJ -SORT is not an incremental

algorithm, we restarted its processing each time i� 10; 000
nearest pairs were generated for i (1 � i � 9). Thus, the
performance measurements of SJ -SORT presented in Fig-
ure 15 are cumulative. For example, the response time of
SJ -SORT for k = 20; 000 includes the times spent on ex-
ecuting SJ -SORT twice, once for k = 10; 000 and another
for k = 20; 000. For each run of SJ -SORT, we used a real
Dmax value for each of di�erent stopping cardinalities.
In Figure 15, we measured the response time of AM-IDJ

algorithm in two di�erent ways: (1) with eDmax values es-
timated by Equation (3), and (2) with real Dmax values.
When estimated eDmax values were provided, AM-IDJ
needed compensation processing only after generating 30,000
pairs and 90,000 pairs, due to overestimated eDmax val-
ues. In contract, when real eDmax values were provided,
AM-IDJ needed to initiate a compensation stage each time
the next set of 10,000 pairs of object were requested by
users. This overhead slowed down the processing due main-
ly to redundant R-tree node accesses. Overall, AM-IDJ
showed a fairly consistent performance over varying eDmax

estimates, as AM-KDJ did in Section 5.6. For all the k
values, AM-IDJ with estimated eDmax improved the re-
sponse time by a factor of two to four, when compared with
HS -IDJ.
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Figure 15: Step-Wise Incremental Execution

6. Conclusions
We have developed new distance join algorithms for spa-

tial databases. The proposed algorithms provide signi�cant
performance improvement over previous work. The plane-
sweep technique optimized by novel strategies for selecting
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Figure 14: Performance Impact of eDmax

a sweeping axis and direction minimizes the computation-
al overhead incurred by bi-directional node expansions. We
have shown that this optimized plane-sweep technique alone
improves processing of a k-distance join query considerably.
The adaptive multi-stage algorithms employ aggressive

pruning and compensation methods to further optimize the
distance join processing. These algorithms address a slow s-
tart problem by using estimated maximum distances as cut-
o� values for pruning distant pairs. Assuming data objects
are uniformly distributed, we have developed strategies to
choose an initial estimate and to correct the estimate adap-
tively during the query processing. Our experimental study
shows that the proposed algorithms outperformed previous
work signi�cantly and consistently over a wide spectrum
of estimated maximum distances. In particular, for a rel-
atively small stopping cardinality, the proposed algorithms
achieved up to an order of magnitude improvement over pre-
vious work.
When the stopping cardinality of a distance join query is

unknown (as in on-line query processing environments or a
complex query that contains a distance join as a sub-query),
the adaptive multi-stage algorithms process the query in a
stepwise manner so that the query results can be returned
incrementally. We plan to develop new strategies for esti-
mating the maximum distances and managing queues for
non-uniform data sets.
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