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Abstract qualifies XML documents by specifying a twig pattern com-
posed of four elementsook, aut hor, nane andtitle

We propose a new way of indexing XML documents and proin an XML document, and a value-based selection predicate
cessing twig patterns in an XML database. Every XML docu-nane="John".
ment in the database can be transformed into a sequence of Queries with a path expression have been one of the major
labels by Piifer's method that constructs a one-to-one corre- foci of research for indexing and querying XML documents.
spondence between trees and sequences. During query pran the past few years, there have been two main thrusts of re-
cessing, a twig pattern is also transformed into itdifer se-  search activities for processing path join queries forieetr
quence. By performing subsequence matching on the set dhg XML data, namely, approaches basedsbructural index
sequences in the database, and performing a series of refineandnumbering schemesThe approaches based on the struc-
ment phases that we have developed, we can find all the ocural index facilitate traversing through the hierarchyx¢fiL
currences of a twig pattern in the database. Our approachdocuments by referencing the structural information of the
allows holistic processing of a twig pattern without breaki  documentsé.g, dataguide [8], representative objects [16], 1-
the twig into root-to-leaf paths and processing these paths  index [15], approximate path summary [12], F&B index [11]).
dividually. Furthermore, we show in the paper that all care  These structural indexes can help reduce the search space fo
answers are found without any false dismissals or falsemaar  processing path or twig queries.
Experimental results demonstrate the performance berwdfits  The other class of approaches are based on a form of num-
our proposed techniques. bering scheme that encodes each element by its positional in
formation within the hierarchy of an XML document it be-
longs to. Most of the numbering schemes reported in the lit-
erature are designed by a tree-traversal ordeg, (pre-and-

. . Egostorder [7], extended preorder [13]) or textual posgiof
Since the extensible markup language XML emerged as &iart and end tage(g, containment property [21], absolute

new standard for information representation and exchange Oregion coordinate [20]). If such a numbering scheme is em-

the Internet [4], the problem of storing, indexing and qilBy  heqded in the labeled trees of XML documents, the structural
XML documents has been among the major issues of databasg|ationship (such as ancestor-descendant) betweenaf péir

1 Introduction

are often modeled as trees whose nodes are labeled with taggantage of this extraordinary opportunity to efficientlppess
and queries are formulated to retrieve documents by speC|fypath and twig queries [1, 5, 6, 9, 13, 21]. In particular, is ha
ing both their structures and values. In most of the XML query yaen shown thaPathStackand TwigStackalgorithms [5] are
languagesd.g, XPath [2] and XQuery [3]), structures of XML qiimal for processing path and twig queries in that the pro-
documents are typically expressed by linear paths or twWig pa cessing cost isinearly proportional to the sum of input data
terns, while values of XML elements are used as part of selecy 4 query results.

tion predicates. For example, a path expression given intKPa Most of the previous approaches based on numbering

syntax X . .
. schemes, however, process a twig query by first processing
book[ aut hor// name="John"]/title each of the root-to-leaf paths in the twig separately and the
merging the results from the individual paths. In an effort
*This work was sponsored in part by National Science FouonafA- to further Optimize t\Nig query processing without breakmg

REER Award (11S-9876037), NSF Grant No. 11S-0100436, and-NR&search : : .
Infrastructure program EIA-0080123. It was also suppohkgdhe Prop 301 twig and merging the results, we propose a new way of in

Fund from the State of Arizona, and Korea Science and Engimge€ounda- dexing XML documents and finding twig patterns in a.n XML
tion (KOSEF). The authors assume all responsibility for ¢betents of the ~ database. We haV(? developed a system calRK (PRufer
paper. sequences forndexingXML) for indexing XML documents
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and processing twig queriédn our PRIX system, every XML _ PN R 1
. . . article Q R g Q o)
document in the database is transformed into a sequence of ANRVAN \
P |
labels by Prifer's method that constructs a one-to-OnB2€or author author title  year TSuT T s T s

spondence between trees and sequences. During query pro ‘ ‘ ‘ Docl Docz QueryQ

cessing, a twig pattern is also transformed into its Prééer  jack jil xMmL 2003 D,= (.8 Q.P) (T PQ)S PQ) R P) (U PR (T,
guence. By performing subsequence matching against the in- D,= £.9QPTPAWQP)E P

dexed sequences in the database, and by performing a series o Q= PeaQRTPYEPAY
refinement phases that we have developed, we can find all thé&) An XML document (b) False Alarms By ViST

occurrences of a twig pattern in the database. Our work was Figure 1. A sample XML document and illustra-
developed independently of and differs considerably frben t tion of false alarms by ViST
new indexing method called ViST [19], which also converts
trees into sequences.

The main contributions of this paper are summarized as fol-of the recent contributions made for XML pattern matching:
lows. TwigStack [5] and ViST [19]. We will then discuss some of

¢ We propose a new idea of transforming XML documents their drawbacks to motivate our proposed approach.

into sequences by Prifer's method. We show that twig ) )
matches can be found by performing subsequence matciwigStack Algorithms ~ Brunoet al.have proposed optimal
on the set of sequences and by performing a series of reXML pattern matching algorithms [5]. These stack-based al-
finement phases. We also show that our approach returngorithms process input streams of element instances whgse t

correct answers without false alarms and false dismissals@Ppears in the query twig. TwigStack and PathStack algo-
rithms operate on the positional representation of the ehm

e Our approach allows holistic processing of twig queries instances to find twig matches. A variant of TwigStack algo-
without breaking a twig into root-to-leaf paths and pro- rithm (denoted hereinafter by TwigStackXB) uses XB-Trees t
cessing them individually. Additionally, our tree-to- speed up processing when the input lists are long. The XB-
sequence transformation guarantees a worst-case bourtees are useful in skipping sections of the input lists auith
on the index size that s linear in the total number of nodesmissing any matches.
in the XML document trees. However, there are some limitations of TwigStackXB. The

effectiveness of skipping data depends on the distribution

She matches in the input lists. If the matches are scattdled a

over the dataset, then the TwigStackXB algorithm drills dow

The rest of this paper is organized as follows. In Section 2to lower regions of the tree (including leaves) in order toidv
we discuss the background and motivations of our work. Inmissing matches. Another drawback of the TwigStack and
Section 3 we present an architectural overview of the PRIX TwigStackXB algorithms is that it suffers from sub-optiityal
system. Section 4 and Section 5 provide the necessary thedor parent-child relationships in the query twig. The algon
retical background and describe the implementation isefies Might produce a partial match of a path of the twig that cannot
the PRIX system. In Section 6 we present our experimentaPe combined with any other partial match of another path of

results. Lastly Section 7 summarizes the contributionsisf t ~ the twig. For example, consider a query twig with 3 nodes and
paper. 2 branches containing parent-child relationships betwdgn

Q and betweerf P, R). The algorithm will match a pattern
in the data wheré is a common ancestor @ andR but is
not their parent. This match will be discarded in the merge

post-processing step of the algorithm. However, the cost of
XML documents can be modeled as ordered labeled treegost-processing may not always be trivial.

as shown in Figure 1(a). Each node in a tree corresponds to an

element or a value. Values are represented by character dat\? )
IST Wanget al.have proposed a new method called ViST
(CDATA, PCDATA) and occur at the leaf nodes. The tree edgeswat transforms XML data trees and twig queries into stmgetu

represent a relationship between two elements or between all coded sequences [19]. The structure-encoded sequence
element and a value. Each element can have a list of (atribut is a two-dirﬂensional se' uence of (symbol, prefix) qairs
value) pairs associated with it. An attribute is usuallyreep q Y P P
sented as a subelement of an element. Hence, no special diéﬁ(al’pl)’ (a2, p2), ., (an, pn)} Wherea; represents a node in

tinction will be made between elements and attributes in sub rogtxn'\glaedct)gurzg?jg _treﬁ_’hzngg (rj(eep;lesents the %arteh ifrzorfr‘(;_he
sequent discussions in this paper. i 1,02; .-, dn p

Recently, much research effort has been focused on indexc-)rder' VIST performs subsequence matching on the structure

ing and querying XML documents. Finding all occurrences of encoded sequences to find twig patterns in XML documents.

a query pattern in XML documents is one of the core opera-These sequences are stored in a trie. .
tions in XML databases. Below we will briefly describe two One of the imminent drawbacks of the tree trapsformatlon
used by ViST is that the worst-case storage requirement for a

LPRIX is pronounced without the ‘x’ like French word Grandxri Bt-tree index named D-Ancestorship is higher than linear in

¢ We have developed effective optimizations to speed up th
subsequence match phase during query processing.

2. Background and Motivations




the total number of elements of the XML documents. For ex- AN

ample, consider a unary tree witlodes. In this case, the total
size of the structure-encoded sequena@(s?). Thus the D-
Ancestorship index requirg3(n?) space to store all the (sym-
bol, prefix) keys. Another drawback of ViST is that the query
processing strategy may resultfalse alarms Figure 1(b) il-
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lustrates such a case. The structure-encoded sequence of th (0.2) (D4) (E5) (G.10) (1) (F.1i
query twig () is a subsequence of the structure-encoded se- (@) Tree T (b) Tree Q
guence ofDoc; andDoc,. However, the twig patter@ occurs ® © o @)
only in Docy, and the match detected Inoc, is a false alarm. | ‘
i (8) ©) (D)

© ® ‘
Our Motivations The key motivations of our work are (1) | | (C‘) (‘E)
to develop a method that allowwmlistic processingf twig | 3
queries without breaking a twig into root-to-leaf paths ano (c) Disconnected (d) Connected

cessing them individually, (2) to construct a tree-to-seme
transformation such that the total storage requiremdiméar Figure 2. XML document tree and query twig

in the total number of tree nodes, and (3) to transform trees t

sequences and index them so thiatilarity in documentgan XML document tree as long as it associates each node in the
be taken advantage of to reduce the total amount of data thaf€€ with a unique number between one and the total number
needs to be searched during query processing. of nodes. This guarantees a one-to-one mapping between the
tree and the sequence. In our PRIX system, without loss of

generality, we have chosen to use postorder to uniquely num-

ber tree nodes, and will continue further discussions based

In this section, we present the Priifer's method that con-the p.ostorder numbering SCh?me- .
structs a one-to-one correspondence between trees and se- With tree nodes labeled with unique postorder numbers, a
quences, and describe how Priifer's sequences are used for iPrufer sequence can be constructed for a given XML document

dexing XML data and processing twig queries in the PRIX sys- using the node remova_l method described in Section 3:1. This
tem. sequence consists entirely of postorder numbers and edcall

NPS (Numbered Rifer sequence)f each numberinan NPSis
replaced by its corresponding tag, a new sequence thatstensi
of XML tags can be constructed. We call this sequebe&

Prufer (1918) proposed a method that constructed a one(lLabeled Ptifer sequencef The set of NPS's are stored in
to-one correspondence between a labeled tree and a sequerif€ database together with their unique document iderstifier
by removing nodes from the tree one at a time [17]. The al- ,
gorithm to construct a sequence from t@ewith n nodes la- ~ Example 1 In Figure 2(a), tree T has LPS(T)=ACBCCB
beled froml ton works as follows. Frorfl,, delete aleafwith ACAEEEDA, andNPS(T)=153766715915131313
the smallest label to form a smaller trég_;. Leta; denote 1415. L]
the label of the node that was the parent of the deleted node.

Repeat this process @h,_; to determines, (the parentofthe  3.3. Processing Twig Queries by Rifer Sequences
next node to be deleted), and continue until only two nodes

joined by an edge are left. The sequefig az, as, ..., an_») A query twig is transformed into.its Prufer sequence like
is called the Prifer sequence of trég. From the sequence XML documents. Non-matches are filtered out by subsequence

(a1,az,as, ..., an_2), the original tred’, can be reconstructed. matching on the indexed sequences, and twig matches are then
The length of the Priifer sequence of tBgis n — 2. In found by applying a series of refinement strategies. These fil

our PRIX approach, however, we construct a Priifer sequencing and refinement phases are described in Section 4.

of lengthn — 1 for T;, by continuing the deletion of nodes till Figure 3 shows an architectural overview of the indexing

only one node is left. (The one-to-one correspondencelis sti @1d query processing units in PRIX as described in Sectibn 3.

preserved). This modified construction simplifies the psagf and Section 3.3. With this high level overview of our system,

the lemmas and theorems presented in Section 4. we shall now move on to explain the process of finding twig
matches.

3. Overview of PRIX Approach

3.1. Prufer Sequences for Labeled Trees

3.2. Indexing by Transforming XML Documents into o .
Prifer Sequences 4. Finding Twig Matches

In the discussions to follow, each XML document is repre-

sented by a labeled tree such that each node is associated wit To simplify our presentation of concepts in this section, we

its element tag and a number. For example, in Figure 2(a),shall use the notations listed in Table 1. Formally the probl

the root ele_ment of the XML document ha4, 15) as its tag- 2Qccasionally we will refer to an NPS agastorder number sequenoé
number pair. Any numbering scheme can be used to label aan LPs




INDEXING ENGINE% Lemma 1 Given atree T with n nodes, numbered from 1tonin
ML List of 1 postorder, the node deleted tiHé time during Piifer sequence

documents | sax parser| XML Tags| | Prufer sequente | construction is the node numberéd
' Construction\Numbered Prufer sequenc

! Leaves

§ ‘ As a result, ifa andb are two nodes of a tree such that
; Labeled g has a smaller postorder number thanhen node: is deleted

i Prufer Index . . .
| Sequenceshe sequences before node during Priifer sequence construction. Based on
Database .
S SR St : Lemma 1, we can state the following theorem.
| LabeledPrufef . . .
Twig | Prgfer feqt:_en € Sequence | Vifual | Theorem 1 If tree Q is a subgraph of tre@”, then LPSQ) is
i onstructi |
Query | " Fitering [ (Mmplemented ‘ a subsequence of LPBY,
Matchi : L .
Subsequendes Numbered Prufer serjuenci From Theorem 1, it is evident that by finding every subse-
I—— / ! eaves i quence inl that matches LP$J), we are guaranteed to have
 umbered Fruter sequen Post processirg § nofalse dismissals

Leaves (Refinement)

| Example 2 Consider treeq" and @ in Figure 2(a) and Fig-

! QUERYENGNE | i ure 2(b).T has LPST)=ACBCCBACAEEEDAand
NPSI)=1537667 15915131313 14 1§ has LPSQ)

) ) . =BAEDAandNPSp)=26456.(Q is a (labeled) sub-

Figure 3. Architectural Overview of PRIX graph ofT, and LPSQ) matches a Subsequenﬁmf LPSQ”)

at positions (6, 7, 11, 13, 14). The postorder number seqgienc

Twig Matches

Zymbm Ouery twig Description of subsequencgis 7 15 13 14 15. Note that there may be more
A A collection of XML documents than one subsequence in LAJthat matches LP$)). O

r A set of Labeled Prifer sequences/of

(C] A set of subsequences Ihthat are identical .

LPS(T) | Labeled Priifer sequence of tree T 4.2. Refinement by Connectedness

NPS(T) | Numbered Prifer sequence of tree T

The subsequences matched during the filtering phase are
further examined for the property @bnnectednessThis is

of finding twig matches can be stated as follo@sven a col- because, only for some of the subsequences, all the labels in

lection of XML documentd and a query twigQ, report all the subsequence correspond to nodes that are connected (rep

the occurrences of twi@) in A. In this paper, we restrict to  [€Senting a tree) in the tree. Formally we stateaessary

handling twigQ with equality predicates only. condition for any subsequence S to satisfy the connectedness
We will initially deal with the problem of finding all occur- ~ Property.

rences of twigR) without wildcards' //* ‘and’ **. Laterin  paqrem 2 Given a tree T, lefVy- be the NPS of T. Let S be

Section 4.5, we exple_lip how query twigs with wildcards can a subsequence of LPS(T) and let N be the postorder number
be processed. In addition, we will first address the problem o sequence of S. Then the tree nodes in T corresponding to the

finding ordered twig matches. Later in Section 5.7, we explai labels of S are connected (representing a tiely if for every

how unordered twig matches can be found. : :
o ; . . __element ofV, i.e., N;, if N; # max(Ny, N, ..., N|n|) and
Finding twig matches in the PRIX system involves a senes{l(j > i) s..N; = N; thenN;y; = N7[Nj].

of filtering and refinement phases, namelyf{ltgring by sub-

sequence matching2) refinement by connectedneg8) re- The intuition for the above theorem is as follows. Ldte

finement by structurand (4)refinement by leaf nodeBue to  the index of the last occurrence of a postorder nurmbieran

the space limitations, proofs of lemmas and theorems are omi NPS. This last occurrence is a result of deletion of the llaikd ¢

ted and provided in the extended version of this paper [18].  of , during Priifer sequence construction. Hence the next child
o ] to be deleted (based on Lemma 1) is the nodtself. Hence

4.1. Filtering by Subsequence Matching the number at th¢i + 1) index in the NPS, sayn, is the

postorder number of the parent of nadeThusn followed by

The filtering phase involves subsequence matching. Thenp indicates that there is an edge between nadind noden.
classical definition of a subsequence is stated below.

Table 1. Notations used

Example 3 Consider two subsequencg€s andSg of LPS(T)
where T is the tree in Figure 2(a). L&t be C B C E D whose
postorder number sequend®, is37 913 14. LeSpbe CB

In this phase, given a query twiQ, we find all the subse- A C A E D A whose postorder number sequeiggis 3 7 15
qguences i (the set of LPS’s) that match LP@]. We shall 9 15 13 14 15. LefNy be the NPS of T. TheN1 is 1537 6
discuss the significance of subsequence matching usinglthe f 6 7 159 15 13 13 13 14 15. The nodes represented by labels
lowing lemma and theorem. of S4 form a disconnected graph as shown in Figure 2(c). In

Definition 1 A subsequence is any string that can be obtained
by deleting zero or more symbols from a given string.



this case, max{ a1, Nao, ..., Nas) = 14. The last occurrence
of postorder numbeT in N4 is at the2™¢ position since there

is no indexj > 2 such thatN,; = 7. HoweverN,; is not
followed byN7[7], i.e., Nas # 15. Hence the necessary con-
dition of Theorem 2 is not satisfied. The nodes represented b
elements ofSg represent a tree as shown in Figure 2(d) be-
cause the necessary condition of Theorem 2 is satisfied.]

Intuitively, the gap between two nodes in a data tree gives
an idea of how many nodes are encountered during postorder
traversal between these two nodes. Similar is the case lnéth t
odes of a query twig. If more nodes are traversed in the query
wig as compared to the data twig, then this indicates theatth
is a structural difference between the data and the quegy twi
This concept forms the basis of Theorem 3 that states a neces-
sary and sufficient condition for match by twig structure.

We shall refer to sequences that satisfy Theorem tPegsse- Another key observation that will be used in Theorem 3 is

guences the following. The number of times a numberccurs in an
NPS indicates the number of child nodeswoih the tree, and

4.3. Refinement by Twig Structure the positions that occurs in the NPS depend on the subtrees

rooted at node.. We formalize this observation by defining a

The tree sequences obtained in the previous refinemerﬁ)rOperty calledrequency consistency

phase are further refined based on the query twig structare. | pefinition 4 Tree sequences A and B are frequency consistent
this phase we would like to determine if the structure oftket ;

represented by a tree sequence matches the query twig struc-

ture. 1. Aand B have the same length n,

. 2. LetN4 and Np be the postorder number sequences of A
4.3.1. Notion of Gaps Between Tree NodedBefore we and B respectively. Leis; andnpg; be theit® element
delve into details of refinement by structure, we shall firs- in N4 and N respectively. For every i from 1 to n;
duce the notion ofjlapbetween two tree nodes agédp consis- occurs k times ilV,4 at positions{pi, p2, ..., pr }, iff np;
tencyandfrequency consistendetween two tree sequences. occurs k times ifVg at positions{p1, pa, ..., pr } -

Definition 2 The gap between two nodasandb in a tree is Note that frequency consistency is an equivalence relation
defined as the difference between the postorder numbers of th q y Y q
nodesa andb. Example 5 In Example 4, sequencés and S, are frequency
fnsistent. Thée*t element inNs, (7) occurs once at position
% ). Thelt elementinNg, (2) also occurs once at position (1).
The2"? element inVg, (15) occurs at positions (2, 5). TR&?

Definition 3 Tree sequence A is said to be gap consistent with€/ement inNs, (7) also occurs at positions (2, 5). Similar is
respect to tree sequence B if the case with the remaining elements\ig, and Ng,. O

1. Aand B have the same length n,

2. ;())(r)r?(;?\g ;;gcoefn??liﬁggtzl??gnif]ei?r Ga;);datr?de COME= |t should be noted that the LPS of a tree contains only the

have the sarrj1e sign, andgfa| > 0tf,18n| < ' | e%ge non-leaf node labels. Thus, in addition to the LPS and NRS, th
—on =0 an. 4 gAl = 1981, label and postorder number of every leaf node should bedstore

ga =98 =1 in the database. Since the LPS of a tree contains only ndn-lea

node labels, filtering by subsequence matching followedeby r

) o finement by connectedness and structure can only find twig

Example 4 Consider the tree T in Figure 2(a). LPS(T) = A C matches in the data tree whose tree structure is the same as

BCCBACAEEEDA, and NPS(T)=1537 667159 the query tree and whose non-leaf node labels match the non-

15131313 14 15. Le$; = B AE E A be a subsequence of |eaf node labels of the query twig. Let us call such matches as

LPS(T) and letVs, =7 15 13 13 15 be the postorder number partial twig matches To find acomplete twig matcithe leaf

sequence of;. LetS; =BAEEA andletNg, =276  nodelabelsof a partially matched twig in the data should be

6 7 be the postorder number sequencé&gf ThenS; is gap  matched with the leaf nodabelsof the query twig. This is

The gap between tree nodes can be computed using the NPS
the tree.

Note that gap consistency is hot a symmetric relation.

consistent withf; because the gap between explained in Section 4.4.
e the 1st pair of elements i is -5, We now state a necessary and sufficient condition foara
e the 1st pair of elements ifi; is -8, tial twig match
e the 2nd pair of elements i, is 1, Theorem 3 Tree Q has a partial twig match in tree T iff
e the 2nd pair of elements if; is 2, 1. LPS(Q) matches a subsequence S of LPS(T) such that S is
e the 3rd pair of elements i, is 0, a tree sequence, and
e the 3rd pair of elements if is 0, and so on. O 2. LPS(Q) is gap consistent and frequency consistent with

subsequence S.



4.5. Processing Wildcards
o We shall explain the processing of wildcaids ' and’ *’

A - NP C e mew
- 0 with the following example.

donical 3 Example 7 Let us find the query pattern Q=//A//C/D in tree
\ ! T (in Figure 2(a)). Q is transformed to its Bfer sequences

8@ prrrrry IR SrITI subsequence of LPS(M) by ignoring the wildcards. As a result, LPS(Q) = C A, and

NSO EEEEEE oty o M Postordernumbersequence of S NPS(Q) = 2 3. The wildcard at the beginning of the query is
handled by our current method as it allows finding occurrence

Figure 4. Data and Query Sequences of a query tree anywhere in the data tree. To process the wild-

card in the middle of the query, we do a simple modification
The different relationships between the data and query seto the refinement-by-connectedness phase. LPS(Q) matches a
quences as described in this section are illustrated inr€igu  Subsequence S = C A at positions (2, 7) in LPS(T). The pos-
Consider the tre@ (XML document) and its subgraph trég torder number sequence of Sis N = 3 15. Based on Theorem 2,
(query twig) in the figure. The dark regions in LAS(and this subsequence would be discarded as the last occurrénce o
NPS() correspond to the deletion of node<firduring Prisfer 3 in N is not followed by 7 (parent of node numbered 3 in T).
sequence construction that are alsagn(except root ofQ). To avoid this, we check instead if the last occurrence of node
The dark regions in LP$() and NPST) form sequences 3in N can lead to node 15 (15 follows 3 in N) by following a
andN respectively. From the lemmas and theorems describe@eries of edges in T. Recall that #& element in an NPS is the
in Section 4.1, Section 4.2 and Section 4.3, we can concluddostorder number of the parent of nodim a tree (Lemma 1).
the following: LPS(QQ) andS are identical, NP$p) isgap con-  Letng = 3 and let Ny be NPS(T). We recursively checlif
sistentwith NV, and NPSQ) and N arefrequency consistent (= Nt[ng)) equalsls, thenifny (= N7[n1]) equalsls and so
on until for some, n;+1 (= Nr[n;]) equalsl5. In the above
4.4. Refinement by Matching Leaf Nodes example, we find a match ati = 2. For processing wildcard ™,
we simply test whether the match is found at i = 2. Thus all
In the final refinement phase, the leaf node labels of thethe subsequences that pass the above test will move to the nex
guery twig are tested with the leaf node labels of partially phase. O
matched twigs in the data to firmbmplete twig matches

Example 6 The leaf nodes of treeT in Figure 2 5. Implementation Issues in the PRIX System
ie.(D,2),(D,4),(E,5),(G,10),(F,11),(F,12) are stored . . . _

in tr(1e daztesbasg. (Let 2re(e Q ()Fié]ure %(é)) be)the query twig. Given the theo_retlcal_background_ in Section 4, we shall
LPS(Q) matches a subsequence S = B A E D A in LPS(TJ"0V€ on to explain the implementation aspects of the PRIX
at positions P = (3, 7, 11, 13, 14). The postorder number SYStem.

sequence of Sis N =7 15 13 14 15. LPS(Q) is gap consisten - ..
and frequency consistent with S. We can match leaf (F, 3) in Q>-1- Building Prifer Sequences

as follows. Since the leaf has postorder number 3, its parent | the PRIX system, Priifer sequences are constructed for
node matches the node numbergi(i.e., the3" element XML document trees (with nodes numbered in postorder) us-
of N) in the data tree. Also because this node numbé8ed  jng the method described in Section 3.1. Our proposed tree-t
occurs at thel1* position " element in P) in LPS(T), it sequence transformation causes the nodes at the lowes level
may have a leaf (F, 11). And indeed, we have (F, 11) in theof the tree to be deleted first. This results in a bottom-upstra
leaf node list of T. Similarly we can match the leaf (C, 1) of Q. formation of the tree. We shall show in our experiments that

The parent of (C, 1) in Q matches nod¢l** elementin N) at  the bottom-up transformation is useful to process quergswi
position3 in NPS(T). Hence the child of noden T, i.e., node  efficiently.

3 matches leaf (C, 1), except that the labels may not match
(partial twig match). Since there are no nodes with nuntber 5 2 |ndexing Sequences UsingBtrees

in the leaf list of T, we search LPS(T) and NPS(T) to find (C,
3) in T. And indeed we have this pair at tB&? position in The set of Labeled Prifer sequences of the XML documents

LPS/NPS of T. 0 are indexed in order to support fast subsequence matching fo
query processing. Maintaining an in-memory index for the se

However, this refinement phase can be eliminated by speciatjuences like a trie is unsuitable, as the index size grows lin

treatment of leaf nodes in the query twig and the data treesearly with the total length of the sequences. In essence, we

The key idea is to make the leaf nodes of the query twig andwould like to build an efficient disk-based index.

the data trees appear in their LPS’s, so that all the nodes of In fact, Priifer sequences can be indexed using any good

the query twig are examined during subsequence matching anthethod for indexing strings. In the current version of oubPR

refinement by connectedness and structure phases. Duéto lasystem, we index Labeled Prifer sequences usihgrBes in

of space, we do not discuss the details in this paper and refethe similar way that Wangt al.build a virtual trie using B -

our readers to the extended version [18]. trees [19].



5.2.1. Virtual Trie. We shall briefly explain the process of
indexing sequences using a virtual trie. Essentially, voeiole
positional representations for the nodes in the trie byliabge

them with ranges. Each node in the trie is labeled with a range

(Left Pos, Ri ghtPos) such that the containment prop-
erty is satisfied [13]. Typically, the root node can be latele
with arangg1, M AX_INT). The child nodes of the root can

Algorithm 1: Filtering Algorithm

Input:  {Qs. 4, (@, 9-)}: Qs is aquery sequence; indéx
(@1, ¢r) is arange;
Output: (D, S); D is a set of document (tree) identifiers;
S denotes the positions of subsequence match;

procedure FindSubsequen¢@;, i, (g, ;)

be labeled with subranges such that these subranges are di- R = RangeQuery(Tq,., (@, qr));

joint and are completely contained (i, M AX_INT). This
containment property is recursively satisfied at every leafi-

2: foreachrin Rdo

3 S; = Level(r);

if (i = |Q,|) then

node in the trie. We can then obtain all the descendants of any* )
D = RangeQuery(DocidIndex, [ry,r,])

given nodeA by performing a range query that finds nodes >

whoseLef t Pos falls within the( Lef t Pos, Ri ght Pos) 6 output(D,S); '
range of noded. 7 Olelse FindSubsequené®,,i + 1, (r;, 7))
en

In the PRIX system, for each element tagve build a B"-
tree that indexes the positional representation of evecymlc
rence of element in the trie using itd_ef t Pos as the key.
We call this indexTrie-Symbol index In addition, we store
each document (tree) identifier in a separatetBze and index
it using theLef t Pos of the node where the LPS ends in the
virtual trie as the key. This index is callébcid index Note
that it is sufficient to store only the LPS’s in the virtualetri
The suffixes of the LPS’s need not be indexed at all, since all
the subsequences can be found by performing range queries
theTrie-Symbol indexess described in Section 5.3.

ViST proposed a dynamic labeling scheme that can assig
number ranges without building a physical trie (hence thmaa

virtual trie) on the set of sequences [19]. However, this dy- I/0 bound. The total number of range queries issued in this
namic labeling scheme suffers frasnope underflowfd 9] for fp_)hase depends on the length of the sequé d|R| in Al-

long sequences and large alphabet sizes, which makes it dif-’ :
ficult to implement. In order to reduce the scope underflows,gOrlthm 1. Our goal is to reduce the number of paths explored

we pre-allocatethe number ranges for a small subset of nodes" the virtal trie to find all the subsequ_ences. From our ex-
in the trie. The remaining nodes are assigned ranges usng ghperiments, we observed that PRIX, by virtue of its bottom-up

dynamic labeling scheme. In order to do so, we build an in.tree transformation, performed fewer range queries th&7 Vi

memory trie for all the prefixes of the sequences of lergth to process query patterns.

(wherea is a small number compared to the actual length of the o ]
sequences). A node in this in-memory trie is allocated a num-5.4. Optimized Subsequence Matching
ber range based on tlieequencyandlengthof the sequences
whose prefixes share that node.

the Docid index (line 5).1(, ,.) is the positional representation
of node idr. (In this caser; = r.) Otherwise,FindSubse-
quencg.) is recursively invoked for the next elemeft ;1)

in the sequence using the ran@e, r,-). In line 3, the posi-
tion of match of theit” element ofQ, (i.e., level of noder

in the trie) is stored inS. The solutions of the range query
in line 1 are the ids of nodeg,;;1) that are descendants of
Onodesti in the virtual trie. In line 4, the algorithm outputs a
Lt of document (tree) identifief and a listS. S contains the
rpositions in the LPS’s of trees corresponding to tree idiensi
in D where@, has a subsequence match.

It should be noted that the subsequence matching phase is

In order to speed up subsequence matching further, it is de-
sired to reduce the number of range queries to be performed
5.2.2. Space Complexity. The size of a trie grows linearly by Algorithm 1 without causing any false dismissals. We can
with the total length of the sequences stored in it. In theXPRI achieve this by pruning some nodesr( line 2 of Algorithm 1)
system, the length of a Prifer sequence is linear in the Bumb with an additional requirement on the gap between elements
of nodes in the tree. Hence the index size is linear in the totacorresponding two adjacent nodes in the query sequence. In
number of tree nodes, while ViST does not guarantee a lineathis regard, we have developed an upper-bounding distance
worst-case bound on the index size. (Refer to Section 2.) metric based on the property of Priifer sequences.

Given a collectiomA of XML document trees and node la-
bele in A, we define the distance metric on the pairA) as
follows.

5.3. Filtering by Subsequence Matching

Let @; = QaQs---Qsr (2 sequence of length) de-
note the LPS of a query twig). The process of find-
ing all occurrences ofp,; using the Trie-Symbol indexes
is shown in Algorithm 1. The algorithm is invoked by
FindSubsequen@;,1,0, MAX_INT). A range query in
the open interval(g, g-) is performed on thely,, (Trie-
Symbol index of@),;) (line 1). For every node id returned
from the range query (line 1), if the sequeriggis found then
all the documents in the closed inter{ial r,.] are fetched from

Definition 5 (MaxGap(e,A)) Maximum postorder gap of a
node labele is defined as the maximum of the difference be-
tween the postorder numbers of the first and the last children
of the node labeled in A.

For example, in Figure 5, the difference in the postordernum
bers of the first and last children of node ladgk 14—8 = 6 in
treeP andis3—1 = 2intreeQ. HenceM azGap(A, {P, Q})



: ( -
5.5. The Refinement Phases
(B( \«:,14) A{ (éﬂ)\(F,ll)
N /\ | The set of ordered pair@, S) returned by Algorithm 1
€3 a4 &0 (B"lo) 0B LHEAEs BN LE 10 are further examined during the refinement phases. The steps
(ot s code iyt s o for the refinement phases are shown in Algorithm 2. The NPS
and the set of leaf nodes @f are read from the database and
Tree P Tree Q . . . . .
LPS(P)=C CBBEEBABCDDCA LPSQ)=AAABDDCCEEB pa_ssed as input to this algorithm. The input subsequence is
NPS(P)=33 887781510 14 13 13 14NBS(Q)=4 4 4127799 12 11 refined by connectedness (Theorem 4.2) in lines 1 through 4.

Note that this algorithm does not handle wildcards, but can b
easily extended (as mentioned in Section 4.5) by modifying
is 6. If every occurrence of labelin A has at most one child, in€ 4. Next, the subsequence is refined by structure byngsti

thenMazGap(e, A) = 0. for gap consistency (Definition 3) in lines 5 through 11. The

We shall now explain the usefulness of this distance metricSUbsequence is then tested for frequency consistency (Defin

for subsequence matching. Recall that in Lemma 1 we havc—{"on 4)inlines 12 through 15. Fi['lally, the algorithm matshg
shown that the®* node to be deleted during the Prifer se- €& nodes of the query twig in lines 16 through 18. This

quence construction is the node numbere@onsider tree? step can be eliminated by special treatment of leaf nodéwein t
in Figure 5. The deletion of node((the first child of nodeg) ~ 9Uery wigs and the data trees [18]. In line 19 we reporta twig

corresponds to the firgt in LPS(P). The deletion of node ~ match.

(last child of node3) corresponds to the secoddin LPS(P). .

As can be observed in this example, the postorder gap between-6. Extended Prifer Sequences

the first and last children of a nodelenotes how far apart the The Priifer sequence of a tree as described in Section 3.1

flrsér?cned l?ﬁ,{%‘;ﬁ:ggcfﬁeﬂgg cl)i?:efr(é?\)cgac:} gen'g dtg,g ;Saet;el .contains only the labels of non-leaf nodes. We call this se-
av . Y ’ Y 'quenceRegular-Ptifer sequence If we extend the tree by

always followed by its parent.node Iabe]. adding a dummy child node to each of its leaf nodes, the Prife
(?upp_orfel tlf)laltca_node W'th labét is _the p?Cr’enBt of a sequence of this extended tree will contain the labels dghall
ng_ e with ahe in-a given queryTévjél?g efm h" are nodes in the original tree. We shall refer to this new seqeienc
?ajsacgimhtmn;[atech%use% ng;‘;ng?' Figure 50 aEc Isogil:i?)rr)lls asExtended-Pifer sequencdn the case of XML, all the value
(1,3) (? 4),(1,7),(1,8), (2,3). (2.4) (92 7, (2,8) Féach of nodes (strings/character data) in the XML document tree are
7S/ ATy s ATe 17 A B)y AEa Oy A8 E0 W 10 A P) s extended by adding dummy child nodes before transforming it
such number pairs represents an instanog Bfmatch in the into a sequence. Similarly, query twigs are also extended be

data sequence. Sind¢axGap(C, {P,Q})is13—10=3,the ¢ o ansforming them into sequences. We refer to the index
gap between the first and last occurrences af the Sequence | ased on Regular-Prifer sequenceRBRisndex and the index
cannot be more than 3, and the gap between the first OCCUITeNG& <o on Extended-Priifer sequencesRisdex

of C and its parenB cannot be more than 4. Thus, among . = ;
; ! Indexing Extended-Prufer sequences is useful for precess
the eight matches above, only fo(ir,3), (1,4), (2,3), (2,4) ing twig queries with values. Since queries with value nodes

may be considered for furthgr processin_g. This example-illu usually have high selectivities, Extended-Prifer seqaspro-

tr:.;ht%s th\{vl:law?gp helgsfdtlhsc?rd lcertallrt1 subsequences that, ;e higher pruning power than Regular-Priifer sequenaes d

wi The |fn|”e y no the part oTthe fina restﬁ ’ f ez ing subsequence matching. As a result, during subsequence
€ following theorém summarizes the use olMezap —— \410hing, a fewer root-to-leaf paths are explored in the vir

as an upper-boun(_jmg distance metric for pruning the SearCI?ual trie of EPI ndex than in the virtual trie oRPI ndex for

space and shortening the subsequence matching process. gueries with values. If twig queries have no values, then in-

Theorem 4 Given a query twigy) and the se© of LPSs for  dexing Regular-Priifer sequences is recommended. Nate tha
A, let A and B denote adjacent labels in LP@) such thatA Extended-Prifer sequences are longer than Regulaeséf
occurs before3. quences and the increase in length is proportional to the num
1. Incase nodel is a child of node3 in @, any subsequence ber of leaf nodes in the original tree.
AB in © cannot result in a twig match, if its position pair In the PRIX system, botRPI ndex andEPI ndex can co-
(¢,7) is such thay — i > MaxGap(A,A) + 1. exist. A query optimizer can choose either of the indexesdbas
2. In case nodé&l is an ancestor of nod® in @, any sub-  on the presence or absence of values in twig queries. Itis eas
sequenced B in © cannot result in a twig match, if its for a query optimizer to detect values in queries since SAX
position pair(i, j) is such thay — i > MaxGap(A, A). parsers already have separate callback routines for valttes
tributes and elements.

Figure 5. Examples for MaxGap

It is straightforward to extend Algorithm 1 to incorporatest
upper-bounding distance metric by computisg€ S;—_1) (af- 5.7. Ordered and Unordered Twig Matches

ter line 3) and testing the appropriate condition in Theodem

usingM axGap of label@;_1. Note that thell axGap metric In PRIX, the Prifer sequence constructed after numbering
can be defined at different levels of granularity. Fineruzd a query twig in postorder, can be used to find all the ordered
MazxGap values can be stored in every occurrence of a symboltwig matches. In order to find unordered matches, Prifer se-
in the virtual trie. quence for different arrangements of the branches of theyque



Algorithm 2: Refinement Algorithms

Input: {Np, Ng, Lp, Lg,S}: Np is the NPS of tred;
Ng is the NPS of query twig;
Lp is alist of leaves in tre®;
Lg is alist of leaves inQ;
S is the positions of a subsequence match in LIPS(

Output: report twig match;

procedure RefineSubsequer(¢ép, Ng, Lp, Lg, S)

Il Test for connectedness (Refinement By Connectedness)

1: maxN = maz(Np[Si], Np[S2], ..., ND[S)5|]);

o N O

10:
11:

12:
13:
14:
15:

16:
17:
18:

19:

fori=1to|S|do
if Np[Si] # mazN AND -3(j > i) s.t. Np[Si] =
ND[S]‘] then
if Np[S;] # Si+1 then returny

end
end

/I Test for gap consistency (Refinement By Structure)
fori=1to|S|—1do

dataGap = Np[S;] — Np[Si+1];

queryGap = Ng[i] — Ng[i + 1];

if ((dataGap = 0 AND queryGap # 0) OR

(queryGap = 0 AND dataGap # 0)) then

returr
end
else ifdataGap x queryGap < 0 then returr

delse if|queryGap| > |dataGap| then returry
en
Il Test for frequency consistency (Refinement By Structure)
fori =1to|S|do
for j =1to|S| ANDj # i do
if NQ[Z] = NQ[]] AND ND[Sz] 7é ND[Sj] then
return

end
end

/I Match leaves (Refinement By Matching Leaves)
foreachi in Lg do
if I not found inLg then
if | not found in LPS/NPS of Ehen return

end
end

report twig matchreturn;

twig should be constructed and tested for twig matches.eSinc
the number of twig branches in a query is usually small, only
a small number of configurations (arrangements) need to bé
tested. For more discussion in this regard, we refer ourensad

to the extended version of this paper [18].

6. Experimental Results

all the algorithms in PRIX, VIST and TwigStack/TwigStackXB
in C++, and used the Btree implementation of GiST [10]
for all their indexes.
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Figure 6. Elapsed time for XPath Queries in Ta-
ble 3

6.1. Experimental Setup

We ran all our experiments on 1.8GHz Pentium IV proces-
sor with 512 MB RAM running Solaris 8. A 40GB EIDE disk
drive was used to store the data and indexes. The code was
compiled using the GNU g++ compiler version 2.95.3. Direct
I/0O feature available on Solaris was enabled to avoid opeyat
system’s cache effects. For all the experiments, the bpéief
size was fixed at 2000 pages. The page size of 8K was used.
For PRIX and ViST, 8-byte number ranges were used to label
the nodes in the virtual trie. For TwigStack/TwigStackXB, 4
byte number ranges were used to label the nodes in the XML
document trees.

6.2. Data Sets

We experimented with the datasets shown in Table 2. These
datasets were obtained from the University of Washington
XML repository [14]. We chose these three datasets sinde eac
had a different characteristic. The document trees in thef>B
dataset had good similarity in structure and were shalldve T
document trees in the SWISSPROT dataset were bushy and
hallow. The document trees in the TREEBANK dataset were
skinny and had deep recursions of element names. Table 2 pro-
vides additional information such as the maximum depth, the
number of elements and so on for the datasets. We constructed
Prufer sequences and ViST'’s structure-encoded sequéces
the collection of XML document trees on each dataset. Table 2
shows the number of sequences constructed for each dataset.

In our experiments, we compared the query performance of )
PRIX, ViST and TwigStack/TwigStackXB. We implemented 6-3- Queries

Ancestorship B -tree.

The XPath queries listed in Table 3 were tested in our ex-

For ViST, the symbol-prefix pairs in periments. These queries have different characteristtesins
the structure-encoded sequences were directly storeé iD-th

of selectivity, presence of values and twig structure. @&l
also shows the number of twig occurrences for each query. For



Dataset Name Size in MBytes| # of Elements| # of Attributes | Max-depth | # of Sequences
DBLP 134 3332130 404276 6 328858
SWISSPROT 115 2977031 2189859 5 50000
TREEBANK 86 2437666 1 36 56385
Table 2. Datasets
Query Dataset # of Twig Matches
Q1 | /linproceedings[./author="Jim Gray"][./year="1990"] DBLP 6
Q2 | /lwww[./editor]/url DBLP 21
Qs | /title[text()="Semantic Analysis Patterns”] DBLP 1
Q4 | /[Entry[./Keyword="Rhizomelic”] SWISSPROT 3
Qs | //[Entry/Ref[./Author="Mueller P"][./Author="Keller M] | SWISSPROT 5
Qe | //Entry[./Org="Piroplasmida”][.//Author]//from SWISSPROT 158
Q7 | IISIINPISYM TREEBANK 9
Qs | /INP[./RBROR.JJIR]/PP TREEBANK 1
Qo | /INP/PP/NP[./NNSOR_NN]J[./NN] TREEBANK 6
Table 3. XPath Queries
Query PRIX VIST Query PRIX ViST
Total time | Disk 10 | Total time Disk 10 Total time | Disk IO | Total time Disk 10
Q1 1.48 secs| 185 pages| 15.28 secs| 3543 pages Q4 0.29 secs| 23 pages 9.52 secs 1757 pages
Q2 0.05secs| 7 pages| 0.15secs 15 pages Qs 0.36 secs| 49 pages| 131.67 secs 128,150 pages
Qs 0.07 secs| 9 pages| 22.07 secs| 2280 pages| Qs 0.75 secs| 86 pages| 39.12 secs 6967 pages

Table 4. DBLP - PRIX vs ViST Table 5. SWISSPROT - PRIX vs ViST

the TREEBANK dataset, since the values were encrypted, wehan the labels found later in the sequence. In such caskys, on
chose queries without values (character data). a few paths in the virtual trie need to be examined to find all
the subsequences. This implies that a smaller number oérang
queries are processed by Algorithm 1. In contrast, ViSafs
downtransformation of a twig resulted in a large number of

In Figure 6 we summarize the performance results in totalnodes (paths) in the virtual trie being examined during sub-
time elapsed for the queries listed in Table 3. We first discus sequence matching for commonly occurring tag names. For
the benefits of PRIX over ViST. example, tag nameaut hor in @, andti t | e in Q3 suffered

from this behavior. PRIX useBPI ndex to process queries
In this section we compare the per- @1 and@s, and clearly outperformed ViST by up to a few
formance between PRIX and ViST. We tested quefesQ,  orders of magnitude. ViST processed quéry comparably,
and Qs for the DBLP dataset.Q; and Q. are twig queries because there were only a few occurrences of tag mamen
with five nodes and two branches, and with three nodes andhe DBLP dataset and hence only a fedi t or descendants
two branches, respectivel@); is a single path query with two  in the trie. PRIX used?PI ndex for processingy, and had
nodesQ; andQ; have values buf), does not have any value. comparable performance.

PRIX performed significantly better than ViST for queries ~ For the SWISSPROT dataset, PRIX again clearly outper-
Q1, andQs, and had comparable performance for quegy ~ formed ViST for all querieg)y, Q5 andQgs. QueryQy is a
Table 4 shows the total time taken and physical I/O (pages reasimple path query with three node@; is a twig query with
from disk) to process querigg;, Q> and(Qs. The presence Six nodes and two branchegs is a twig query with five nodes
of values in ViST’s structure-encoded sequences reduees thand three branches. These queries have values in them.
sharing of root-to-leaf paths in the trie. In the worst-casery Table 5 shows the performance results for quefles Qs
sequence could cause a separate root-to-leaf path in ¢he triand@Qs. As mentioned earlier, ViST’s top-down transforma-
Furthermore, the presence of the root-to-node prefix in eachion of the twig deteriorated the query processing consiolgr
node of the structure-encoded sequences further reduees tifag nameRef in ()5 andOr g in Qg resulted in many range
sharing in the trie. queries during subsequence matching. This increasedske di

Similarly, the presence of values in Extended-Prifer se-1/0O and slowed down the query processing. On the other hand,
guences reduces the sharing of root-to-leaf paths in tee tri PRIX usedEPI ndex to process)s, @5 andQe and processed
However, thebottom-uptransformation of the query twig and them efficiently. This demonstrates the advantage of bettom
datain PRIX plays a crucial role in reducing the query preees up transformation of PRIX once again.
ing time. Since the selectivity of value nodes is usuallyhleig Another drawback of ViST that we would like to point outis
than that of element nodes, the labels at the beginning of thehe processing of queries with wildcards like/ ' for datasets
LPS of a query twig may occur less frequently in the virtuigl tr ~ with recursions of elements. We tested queliks Qs and

6.4. Performance Analysis

6.4.1. PRIX vs ViST.



Query PRIX VIiST Query PRIX TwigStackXB
Total time | Disk IO | Total time Disk IO Total time | Disk IO | Total time | Disk 10
Q7 0.42 secs| 46 pages| 198.40 secs 40,827 pages Q2 0.05secs| 7pages| 0.49secs| 63 pages
Qs 0.35 secs| 35 pages| 672.20 secs 94,505 pages Qs 0.75 secs| 86 pages| 3.10 secs| 485 pages|
Qo 0.50 secs| 55 pages| 767.24 secs 121,928 pages Qs 0.35secs| 35 pages| 1.93 secs| 310 pages|
Table 6. TREEBANK - PRIX vs ViST Table 9. PRIX vs TwigStackXB for @2, Qg, Qs
Query TwigStack TwigStackXB For queries?:, Qs, Q4, Qs, Q7, andQy, both PRIX and
Totaltime | Disk1O | Totaltime | Disk IO TwigStackXB yielded comparable performance. Table 8 shows
Q1 | 20.74 secs 8756 pages 1.28 secs| 201 pages the performance results for queri@s, Qs, Q. Similar trend
Q2 7.25 secs| 2310 pages| 0.49secs 63 pages in performance was observed for querigsand@,. (Refer to
Qs | 6.17secs| 2271 pages| 0.05secs| 8 pages Figure 6.) As expected, TwigStackXB processed these caierie

efficiently, because the solutions for those queries wars-cl
tered in certain regions of the data and the XB-Trees were ef-
Qo on the TREEBANK dataset. These queries do not havefective in skipping nodes in the input streams. On the other
any values. Querg); is a single path query with three nodes hand, PRIX also processed these queries efficiently using it
and two/ / 's, QueryQs is a twig with two branches and three bottom-upprocessing strategy.
nodes. Query), has two branches and five nodes. Table 6 We now analyze the query performance of PRIX and
shows the performance results for querigs Qs andQy. TwigStackXB for querieg)2, Q¢ andQs shownin Table 9. We
ViST processed wildcards ifp; the following way. The pompared PRIX ar}d TW|gSta(_:kXB und_ertvvp different scenar-
D-Ancestorship index was first searched for &) (/) keys. ios nam_el}d!stnbutlon of po$S|bIe s_olutlo_ns in the dataseid
Thus, every key wittS as its symbol was matched. The tag Sub-optimality for parent/child relationships
nameS occurred at different levels in the TREEBANK dataset,
in addition to occurring frequently in the dataset. Thisuhes Distribution of Possible Solutions in the Data Set The ef-
in many unique (symbol, prefix) key matches to begin with. In fectiveness of skipping input data using XB-Trees is depen-
all, 515 unique (symbol, prefix) keys were matched in the D- dent on the distribution of matches in the dataset. Further-
Ancestorship index during the processing@@f. In addition, more, if the nodes in different branches of a query twig occur
there were several occurrences of each (symbol, prefix) keyin different but nearby documents in the input data, then the
Thus many paths in the virtual trie were searched for subseTwigStackXB algorithm is forced to drill down to the lowerre
guences. Similar was the case for qu@gsince the tag name gions of the XB-Trees (and possibly leaves) to verify whethe
NP occurred frequently and at different levels in the TREE- these nodes represent a match. Quegigand(@)s were tested
BANK dataset. In this casel6, 355 unique (symbol, prefix) for the behavior.
keys were matched in the D-Ancestorship index duringthe pro  In the case of)», tag nameww was scattered in the DBLP
cessing ofYs. dataset. The other two tag names@ namelyedi t or
PRIX usedRPI ndex to process querigdr, Qs andQy and andur | occurred frequently in the dataset and were present
outperformed ViST once again. The bottom-up transfornmatio around the documents wittwwv elements in the input data.
of the query twig resulted in only a few paths being searchedThis caused TwigStackXB to drill down to the lower regions of
in the virtual trie. Note that in our PRIX system, the presenc the XB-Trees several times, in order to eliminate these siode
of wildcards does not add extra overhead during subsequenciom the solution set. This process increased the disk I/O.
matching. (Refer to Section 4.5.) On the other hand, PRIX (usirigPl ndex) processed),
several times faster than TwigStackXB. The XML documents
6.4.2. PRIX vs TwigStack/TwigStackXB.  In this section, " the DBLP dataset had good similarity in terms of tree struc
we compare the performance of PRIX and TwigStack’XB. ture. This resulted in sharing of root-to-leaf paths in tire v
TwigStackXB uses XB-Trees to skip nodes in the sorted inputtUa! trie by ]sevferal hR_egLI{]Iar-Prufelr sequenCﬁs. ng exz,mpl
stream. Note that for all the queries in Table 3 that we testedgne r?ot-ltao.-.fea path in the w;t\ua trie V\;as ﬁ are | y86 ber of
TwigStack performed worse than TwigStackXB. Table 7 shows ecgj;u ar rr]u er sethue_znces. g a rgzsu L, _tde t%tla nl;m er IO
the performance results for TwigStack and TwigStackXB for nodes in the virtual trie was reduced considerably. Thug on

the DBLP dataset. Other results for TwigStack have been-omit & few range queries were required to find all the subsequence
ted due to lack of space. matches for processing quei.
PRIX (usingEPI ndex) also processed)s several times

Table 7. DBLP - TwigStack vs TwigStackXB

Query PRIX TwigStackXB faster than TwigStackXB. In the SWISSPROT dataset that we
Totaltime | Disk 1O | Totaltime| Disk IO used, documents with patteEnt r y/ Or g/ Pi r opl asm da
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Q1, Qs, Q7
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