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Abstract

We propose a new way of indexing XML documents and pro-
cessing twig patterns in an XML database. Every XML docu-
ment in the database can be transformed into a sequence of
labels by Pr̈ufer’s method that constructs a one-to-one corre-
spondence between trees and sequences. During query pro-
cessing, a twig pattern is also transformed into its Prüfer se-
quence. By performing subsequence matching on the set of
sequences in the database, and performing a series of refine-
ment phases that we have developed, we can find all the oc-
currences of a twig pattern in the database. Our approach
allows holistic processing of a twig pattern without breaking
the twig into root-to-leaf paths and processing these pathsin-
dividually. Furthermore, we show in the paper that all correct
answers are found without any false dismissals or false alarms.
Experimental results demonstrate the performance benefitsof
our proposed techniques.

1 Introduction

Since the extensible markup language XML emerged as a
new standard for information representation and exchange on
the Internet [4], the problem of storing, indexing and querying
XML documents has been among the major issues of database
research. As the relationships between elements in an XML
document are defined by nested structures, XML documents
are often modeled as trees whose nodes are labeled with tags,
and queries are formulated to retrieve documents by specify-
ing both their structures and values. In most of the XML query
languages (e.g., XPath [2] and XQuery [3]), structures of XML
documents are typically expressed by linear paths or twig pat-
terns, while values of XML elements are used as part of selec-
tion predicates. For example, a path expression given in XPath
syntax

book[author//name="John"]/title
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qualifies XML documents by specifying a twig pattern com-
posed of four elementsbook, author, name andtitle
in an XML document, and a value-based selection predicate
name="John".

Queries with a path expression have been one of the major
foci of research for indexing and querying XML documents.
In the past few years, there have been two main thrusts of re-
search activities for processing path join queries for retriev-
ing XML data, namely, approaches based onstructural index
andnumbering schemes. The approaches based on the struc-
tural index facilitate traversing through the hierarchy ofXML
documents by referencing the structural information of the
documents (e.g., dataguide [8], representative objects [16], 1-
index [15], approximate path summary [12], F&B index [11]).
These structural indexes can help reduce the search space for
processing path or twig queries.

The other class of approaches are based on a form of num-
bering scheme that encodes each element by its positional in-
formation within the hierarchy of an XML document it be-
longs to. Most of the numbering schemes reported in the lit-
erature are designed by a tree-traversal order (e.g., pre-and-
postorder [7], extended preorder [13]) or textual positions of
start and end tags (e.g., containment property [21], absolute
region coordinate [20]). If such a numbering scheme is em-
bedded in the labeled trees of XML documents, the structural
relationship (such as ancestor-descendant) between a pairof el-
ements can be determined quickly without traversing an entire
tree. Several join algorithms have been developed to take ad-
vantage of this extraordinary opportunity to efficiently process
path and twig queries [1, 5, 6, 9, 13, 21]. In particular, it has
been shown thatPathStackandTwigStackalgorithms [5] are
optimal for processing path and twig queries in that the pro-
cessing cost islinearly proportional to the sum of input data
and query results.

Most of the previous approaches based on numbering
schemes, however, process a twig query by first processing
each of the root-to-leaf paths in the twig separately and then
merging the results from the individual paths. In an effort
to further optimize twig query processing without breakinga
twig and merging the results, we propose a new way of in-
dexing XML documents and finding twig patterns in an XML
database. We have developed a system calledPRIX (PRüfer
sequences forIndexingXML) for indexing XML documents



and processing twig queries.1 In our PRIX system, every XML
document in the database is transformed into a sequence of
labels by Prüfer’s method that constructs a one-to-one corre-
spondence between trees and sequences. During query pro-
cessing, a twig pattern is also transformed into its Prüferse-
quence. By performing subsequence matching against the in-
dexed sequences in the database, and by performing a series of
refinement phases that we have developed, we can find all the
occurrences of a twig pattern in the database. Our work was
developed independently of and differs considerably from the
new indexing method called ViST [19], which also converts
trees into sequences.

The main contributions of this paper are summarized as fol-
lows.

� We propose a new idea of transforming XML documents
into sequences by Prüfer’s method. We show that twig
matches can be found by performing subsequence match
on the set of sequences and by performing a series of re-
finement phases. We also show that our approach returns
correct answers without false alarms and false dismissals.

� Our approach allows holistic processing of twig queries
without breaking a twig into root-to-leaf paths and pro-
cessing them individually. Additionally, our tree-to-
sequence transformation guarantees a worst-case bound
on the index size that is linear in the total number of nodes
in the XML document trees.

� We have developed effective optimizations to speed up the
subsequence match phase during query processing.

The rest of this paper is organized as follows. In Section 2
we discuss the background and motivations of our work. In
Section 3 we present an architectural overview of the PRIX
system. Section 4 and Section 5 provide the necessary theo-
retical background and describe the implementation issuesof
the PRIX system. In Section 6 we present our experimental
results. Lastly Section 7 summarizes the contributions of this
paper.

2. Background and Motivations

XML documents can be modeled as ordered labeled trees
as shown in Figure 1(a). Each node in a tree corresponds to an
element or a value. Values are represented by character data
(CDATA, PCDATA) and occur at the leaf nodes. The tree edges
represent a relationship between two elements or between an
element and a value. Each element can have a list of (attribute,
value) pairs associated with it. An attribute is usually repre-
sented as a subelement of an element. Hence, no special dis-
tinction will be made between elements and attributes in sub-
sequent discussions in this paper.

Recently, much research effort has been focused on index-
ing and querying XML documents. Finding all occurrences of
a query pattern in XML documents is one of the core opera-
tions in XML databases. Below we will briefly describe two

1PRIX is pronounced without the ‘x’ like French word Grand Prix.
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Figure 1. A sample XML document and illustra-
tion of false alarms by ViST

of the recent contributions made for XML pattern matching:
TwigStack [5] and ViST [19]. We will then discuss some of
their drawbacks to motivate our proposed approach.

TwigStack Algorithms Brunoet al.have proposed optimal
XML pattern matching algorithms [5]. These stack-based al-
gorithms process input streams of element instances whose tag
appears in the query twig. TwigStack and PathStack algo-
rithms operate on the positional representation of the element
instances to find twig matches. A variant of TwigStack algo-
rithm (denoted hereinafter by TwigStackXB) uses XB-Trees to
speed up processing when the input lists are long. The XB-
Trees are useful in skipping sections of the input lists without
missing any matches.

However, there are some limitations of TwigStackXB. The
effectiveness of skipping data depends on the distributionof
the matches in the input lists. If the matches are scattered all
over the dataset, then the TwigStackXB algorithm drills down
to lower regions of the tree (including leaves) in order to avoid
missing matches. Another drawback of the TwigStack and
TwigStackXB algorithms is that it suffers from sub-optimality
for parent-child relationships in the query twig. The algorithm
might produce a partial match of a path of the twig that cannot
be combined with any other partial match of another path of
the twig. For example, consider a query twig with 3 nodes and
2 branches containing parent-child relationships between(P,
Q) and between(P, R). The algorithm will match a pattern
in the data whereP is a common ancestor ofQ andR but is
not their parent. This match will be discarded in the merge
post-processing step of the algorithm. However, the cost of
post-processing may not always be trivial.

ViST Wanget al.have proposed a new method called ViST
that transforms XML data trees and twig queries into structure-
encoded sequences [19]. The structure-encoded sequence
is a two-dimensional sequence of (symbol, prefix) pairs���� �� � � � ��� �� � � � 			� ��
 �� 
 ��

where
��

represents a node in
the XML document tree, and

� �
represents the path from the

root node to node
��

. The nodes
�� � �� � 			� �


are in pre-
order. ViST performs subsequence matching on the structure-
encoded sequences to find twig patterns in XML documents.
These sequences are stored in a trie.

One of the imminent drawbacks of the tree transformation
used by ViST is that the worst-case storage requirement for a
B -tree index named D-Ancestorship is higher than linear in



the total number of elements of the XML documents. For ex-
ample, consider a unary tree with� nodes. In this case, the total
size of the structure-encoded sequence is

� ��
� �

. Thus the D-
Ancestorship index requires

� ��
� �

space to store all the (sym-
bol, prefix) keys. Another drawback of ViST is that the query
processing strategy may result infalse alarms. Figure 1(b) il-
lustrates such a case. The structure-encoded sequence of the
query twig � is a subsequence of the structure-encoded se-
quence of���� and���� . However, the twig pattern� occurs
only in ����, and the match detected in���� is a false alarm.

Our Motivations The key motivations of our work are (1)
to develop a method that allowsholistic processingof twig
queries without breaking a twig into root-to-leaf paths andpro-
cessing them individually, (2) to construct a tree-to-sequence
transformation such that the total storage requirement islinear
in the total number of tree nodes, and (3) to transform trees to
sequences and index them so thatsimilarity in documentscan
be taken advantage of to reduce the total amount of data that
needs to be searched during query processing.

3. Overview of PRIX Approach

In this section, we present the Prüfer’s method that con-
structs a one-to-one correspondence between trees and se-
quences, and describe how Prüfer’s sequences are used for in-
dexing XML data and processing twig queries in the PRIX sys-
tem.

3.1. Prüfer Sequences for Labeled Trees

Prüfer (1918) proposed a method that constructed a one-
to-one correspondence between a labeled tree and a sequence
by removing nodes from the tree one at a time [17]. The al-
gorithm to construct a sequence from tree�


with � nodes la-
beled from� to � works as follows. From�


, delete a leaf with
the smallest label to form a smaller tree�
��

. Let
��

denote
the label of the node that was the parent of the deleted node.
Repeat this process on�
��

to determine
��

(the parent of the
next node to be deleted), and continue until only two nodes
joined by an edge are left. The sequence

�� � � �� � �	 � 			� �
�� �
is called the Prüfer sequence of tree�


. From the sequence��� � �� � �	 � 			� �
�� �
, the original tree�


can be reconstructed.
The length of the Prüfer sequence of tree�


is � 
 �. In
our PRIX approach, however, we construct a Prüfer sequence
of length� 
 � for �


by continuing the deletion of nodes till
only one node is left. (The one-to-one correspondence is still
preserved). This modified construction simplifies the proofs of
the lemmas and theorems presented in Section 4.

3.2. Indexing by Transforming XML Documents into
Prüfer Sequences

In the discussions to follow, each XML document is repre-
sented by a labeled tree such that each node is associated with
its element tag and a number. For example, in Figure 2(a),
the root element of the XML document has

�� � �� as its tag-
number pair. Any numbering scheme can be used to label an
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Figure 2. XML document tree and query twig

XML document tree as long as it associates each node in the
tree with a unique number between one and the total number
of nodes. This guarantees a one-to-one mapping between the
tree and the sequence. In our PRIX system, without loss of
generality, we have chosen to use postorder to uniquely num-
ber tree nodes, and will continue further discussions basedon
the postorder numbering scheme.

With tree nodes labeled with unique postorder numbers, a
Prüfer sequence can be constructed for a given XML document
using the node removal method described in Section 3.1. This
sequence consists entirely of postorder numbers and is called
NPS (Numbered Prüfer sequence). If each number in an NPS is
replaced by its corresponding tag, a new sequence that consists
of XML tags can be constructed. We call this sequenceLPS
(Labeled Pr̈ufer sequence). 2 The set of NPS’s are stored in
the database together with their unique document identifiers.

Example 1 In Figure 2(a), tree T has LPS(T) = A C B C C B
A C A E E E D A, and NPS(T) = 15 3 7 6 6 7 15 9 15 13 13 13
14 15.

3.3. Processing Twig Queries by Pr̈ufer Sequences

A query twig is transformed into its Prüfer sequence like
XML documents. Non-matches are filtered out by subsequence
matching on the indexed sequences, and twig matches are then
found by applying a series of refinement strategies. These fil-
tering and refinement phases are described in Section 4.

Figure 3 shows an architectural overview of the indexing
and query processing units in PRIX as described in Section 3.2
and Section 3.3. With this high level overview of our system,
we shall now move on to explain the process of finding twig
matches.

4. Finding Twig Matches

To simplify our presentation of concepts in this section, we
shall use the notations listed in Table 1. Formally the problem

2Occasionally we will refer to an NPS as apostorder number sequenceof
an LPS
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Symbol Description�
Query twig�
A collection of XML documents�
A set of Labeled Prüfer sequences of

�
�

A set of subsequences in
�

that are identical
LPS(T) Labeled Prüfer sequence of tree T
NPS(T) Numbered Prüfer sequence of tree T

Table 1. Notations used

of finding twig matches can be stated as follows:Given a col-
lection of XML documents� and a query twig� , report all
the occurrences of twig� in � . In this paper, we restrict to
handling twig� with equality predicates only.

We will initially deal with the problem of finding all occur-
rences of twig� without wildcards’//’ and’*’. Later in
Section 4.5, we explain how query twigs with wildcards can
be processed. In addition, we will first address the problem of
finding ordered twig matches. Later in Section 5.7, we explain
how unordered twig matches can be found.

Finding twig matches in the PRIX system involves a series
of filtering and refinement phases, namely (1)filtering by sub-
sequence matching, (2) refinement by connectedness, (3) re-
finement by structureand (4)refinement by leaf nodes. Due to
the space limitations, proofs of lemmas and theorems are omit-
ted and provided in the extended version of this paper [18].

4.1. Filtering by Subsequence Matching

The filtering phase involves subsequence matching. The
classical definition of a subsequence is stated below.

Definition 1 A subsequence is any string that can be obtained
by deleting zero or more symbols from a given string.

In this phase, given a query twig� , we find all the subse-
quences in� (the set of LPS’s) that match LPS(�). We shall
discuss the significance of subsequence matching using the fol-
lowing lemma and theorem.

Lemma 1 Given a tree T with n nodes, numbered from 1 to n in
postorder, the node deleted the��� time during Pr̈ufer sequence
construction is the node numbered�.

As a result, if
�

and 	 are two nodes of a tree such that
�

has a smaller postorder number than	, then node
�

is deleted
before node	 during Prüfer sequence construction. Based on
Lemma 1, we can state the following theorem.

Theorem 1 If tree � is a subgraph of tree� , then LPS(�) is
a subsequence of LPS(� ).

From Theorem 1, it is evident that by finding every subse-
quence in� that matches LPS(�), we are guaranteed to have
no false dismissals.

Example 2 Consider trees� and � in Figure 2(a) and Fig-
ure 2(b).� has LPS(� ) = A C B C C B A C A E E E D A and
NPS(� ) = 15 3 7 6 6 7 15 9 15 13 13 13 14 15.� has LPS(�)
= B A E D A and NPS(�) = 2 6 4 5 6. � is a (labeled) sub-
graph of� , and LPS(�) matches a subsequence
 of LPS(� )
at positions (6, 7, 11, 13, 14). The postorder number sequence
of subsequence
 is 7 15 13 14 15. Note that there may be more
than one subsequence in LPS(� ) that matches LPS(�).

4.2. Refinement by Connectedness

The subsequences matched during the filtering phase are
further examined for the property ofconnectedness. This is
because, only for some of the subsequences, all the labels in
the subsequence correspond to nodes that are connected (rep-
resenting a tree) in the tree. Formally we state anecessary
condition for any subsequence S to satisfy the connectedness
property.

Theorem 2 Given a tree T, let�� be the NPS of T. Let S be
a subsequence of LPS(T) and let N be the postorder number
sequence of S. Then the tree nodes in T corresponding to the
labels of S are connected (representing a tree)only if for every
element of� , i.e., � �

, if � � � � �� �� � �� � � 			�� �� �� and�� �� � �� s.t.�� � � �
then� �


� � �� �� � �

.

The intuition for the above theorem is as follows. Let� be
the index of the last occurrence of a postorder number� in an
NPS. This last occurrence is a result of deletion of the last child
of � during Prüfer sequence construction. Hence the next child
to be deleted (based on Lemma 1) is the node� itself. Hence
the number at the

�� � ���� index in the NPS, say� , is the
postorder number of the parent of node�. Thus� followed by� indicates that there is an edge between node� and node�.

Example 3 Consider two subsequences
� and
� of LPS(T)
where T is the tree in Figure 2(a). Let
� be C B C E D whose
postorder number sequence�� is 3 7 9 13 14. Let
� be C B
A C A E D A whose postorder number sequence�� is 3 7 15
9 15 13 14 15. Let�� be the NPS of T. Then�� is 15 3 7 6
6 7 15 9 15 13 13 13 14 15. The nodes represented by labels
of 
� form a disconnected graph as shown in Figure 2(c). In



this case, max(�� � ��� � � 			��� �) = 14. The last occurrence
of postorder number

�
in �� is at the�


�
position since there

is no index
� � � such that��� � �

. However�� �
is not

followed by�� ���, i.e.,�� 	 � �. Hence the necessary con-
dition of Theorem 2 is not satisfied. The nodes represented by
elements of
� represent a tree as shown in Figure 2(d) be-
cause the necessary condition of Theorem 2 is satisfied.

We shall refer to sequences that satisfy Theorem 2 astree se-
quences.

4.3. Refinement by Twig Structure

The tree sequences obtained in the previous refinement
phase are further refined based on the query twig structure. In
this phase we would like to determine if the structure of the tree
represented by a tree sequence matches the query twig struc-
ture.

4.3.1. Notion of Gaps Between Tree Nodes.Before we
delve into details of refinement by structure, we shall first intro-
duce the notion ofgapbetween two tree nodes andgap consis-
tencyandfrequency consistencybetween two tree sequences.

Definition 2 The gap between two nodesa and b in a tree is
defined as the difference between the postorder numbers of the
nodesa andb.

The gap between tree nodes can be computed using the NPS of
the tree.

Definition 3 Tree sequence A is said to be gap consistent with
respect to tree sequence B if

1. A and B have the same length n,
2. For every pair of adjacent elements in A and the corre-

sponding adjacent elements in B, their gaps,�� and ��
have the same sign, and if��� � � �

then ��� � � ��� �, else
�� � �� � �

.

Note that gap consistency is not a symmetric relation.

Example 4 Consider the tree T in Figure 2(a). LPS(T) = A C
B C C B A C A E E E D A, and NPS(T) = 15 3 7 6 6 7 15 9
15 13 13 13 14 15. Let
 �

= B A E E A be a subsequence of
LPS(T) and let� �� = 7 15 13 13 15 be the postorder number
sequence of
 �

. Let 
�
= B A E E A, and let� �	 = 2 7 6

6 7 be the postorder number sequence of
 �
. Then
�

is gap
consistent with
 �

because the gap between
� the 1st pair of elements in
� is -5,� the 1st pair of elements in
 � is -8,� the 2nd pair of elements in
� is 1,� the 2nd pair of elements in
 � is 2,� the 3rd pair of elements in
� is 0,� the 3rd pair of elements in
 � is 0, and so on.

Intuitively, the gap between two nodes in a data tree gives
an idea of how many nodes are encountered during postorder
traversal between these two nodes. Similar is the case with the
nodes of a query twig. If more nodes are traversed in the query
twig as compared to the data twig, then this indicates that there
is a structural difference between the data and the query twig.
This concept forms the basis of Theorem 3 that states a neces-
sary and sufficient condition for match by twig structure.

Another key observation that will be used in Theorem 3 is
the following. The number of times a number� occurs in an
NPS indicates the number of child nodes of� in the tree, and
the positions that� occurs in the NPS depend on the subtrees
rooted at node�. We formalize this observation by defining a
property calledfrequency consistency.

Definition 4 Tree sequences A and B are frequency consistent
if

1. A and B have the same length n,

2. Let�� and�� be the postorder number sequences of A
and B respectively. Let�� �

and �� �
be the��� element

in �� and�� respectively. For every i from 1 to n,�� �
occurs k times in�� at positions

�� � �� � � 			��  �
, iff �� �

occurs k times in�� at positions
�� � �� � � 			� �  �

.

Note that frequency consistency is an equivalence relation.

Example 5 In Example 4, sequences
 �
and
�

are frequency
consistent. The��� element in� �� (7) occurs once at position
(1). The��� element in� �	 (2) also occurs once at position (1).
The�


�
element in� �� (15) occurs at positions (2, 5). The�


�
element in� �	 (7) also occurs at positions (2, 5). Similar is
the case with the remaining elements in� �� and� �	 .

It should be noted that the LPS of a tree contains only the
non-leaf node labels. Thus, in addition to the LPS and NPS, the
label and postorder number of every leaf node should be stored
in the database. Since the LPS of a tree contains only non-leaf
node labels, filtering by subsequence matching followed by re-
finement by connectedness and structure can only find twig
matches in the data tree whose tree structure is the same as
the query tree and whose non-leaf node labels match the non-
leaf node labels of the query twig. Let us call such matches as
partial twig matches. To find acomplete twig match, the leaf
nodelabelsof a partially matched twig in the data should be
matched with the leaf nodelabelsof the query twig. This is
explained in Section 4.4.

We now state a necessary and sufficient condition for apar-
tial twig match.

Theorem 3 Tree Q has a partial twig match in tree T iff

1. LPS(Q) matches a subsequence S of LPS(T) such that S is
a tree sequence, and

2. LPS(Q) is gap consistent and frequency consistent with
subsequence S.
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The different relationships between the data and query se-
quences as described in this section are illustrated in Figure 4.
Consider the tree� (XML document) and its subgraph tree�
(query twig) in the figure. The dark regions in LPS(� ) and
NPS(� ) correspond to the deletion of nodes in� during Prüfer
sequence construction that are also in� (except root of�).
The dark regions in LPS(� ) and NPS(� ) form sequences

and� respectively. From the lemmas and theorems described
in Section 4.1, Section 4.2 and Section 4.3, we can conclude
the following: LPS(�) and
 are identical, NPS(�) is gap con-
sistentwith � , and NPS(�) and� arefrequency consistent.

4.4. Refinement by Matching Leaf Nodes

In the final refinement phase, the leaf node labels of the
query twig are tested with the leaf node labels of partially
matched twigs in the data to findcomplete twig matches.

Example 6 The leaf nodes of tree� in Figure 2
i.e.,

�� � �� � �� � � � � �� � � � �� � �� � � �� � ��� � �� � ��� are stored
in the database. Let tree Q (Figure 2(b)) be the query twig.
LPS(Q) matches a subsequence S = B A E D A in LPS(T)
at positions P = (3, 7, 11, 13, 14). The postorder number
sequence of S is N = 7 15 13 14 15. LPS(Q) is gap consistent
and frequency consistent with S. We can match leaf (F, 3) in Q
as follows. Since the leaf has postorder number 3, its parent
node matches the node numbered�� (i.e., the ��

�
element

of N) in the data tree. Also because this node numbered��
occurs at the���� position (��

�
element in P) in LPS(T), it

may have a leaf (F, 11). And indeed, we have (F, 11) in the
leaf node list of T. Similarly we can match the leaf (C, 1) of Q.
The parent of (C, 1) in Q matches node

�
(��� element in N) at

position� in NPS(T). Hence the child of node
�

in T, i.e., node
� matches leaf (C, 1), except that the labels may not match
(partial twig match). Since there are no nodes with number�
in the leaf list of T, we search LPS(T) and NPS(T) to find (C,
3) in T. And indeed we have this pair at the�


�
position in

LPS/NPS of T.

However, this refinement phase can be eliminated by special
treatment of leaf nodes in the query twig and the data trees.
The key idea is to make the leaf nodes of the query twig and
the data trees appear in their LPS’s, so that all the nodes of
the query twig are examined during subsequence matching and
refinement by connectedness and structure phases. Due to lack
of space, we do not discuss the details in this paper and refer
our readers to the extended version [18].

4.5. Processing Wildcards

We shall explain the processing of wildcards’//’ and’*’
with the following example.

Example 7 Let us find the query pattern Q=//A//C/D in tree
T (in Figure 2(a)). Q is transformed to its Prüfer sequences
by ignoring the wildcards. As a result, LPS(Q) = C A, and
NPS(Q) = 2 3. The wildcard at the beginning of the query is
handled by our current method as it allows finding occurrences
of a query tree anywhere in the data tree. To process the wild-
card in the middle of the query, we do a simple modification
to the refinement-by-connectedness phase. LPS(Q) matches a
subsequence S = C A at positions (2, 7) in LPS(T). The pos-
torder number sequence of S is N = 3 15. Based on Theorem 2,
this subsequence would be discarded as the last occurrence of
3 in N is not followed by 7 (parent of node numbered 3 in T).
To avoid this, we check instead if the last occurrence of node
3 in N can lead to node 15 (15 follows 3 in N) by following a
series of edges in T. Recall that the��� element in an NPS is the
postorder number of the parent of node� in a tree (Lemma 1).
Let � � � � and let�� be NPS(T). We recursively check if� �
�� �� �� � �� equals�, then if� � �� �� �� � ��

equals� and so
on until for some�, � �


� �� �� �� � ��

equals�. In the above
example, we find a match at i = 2. For processing wildcard ’*’,
we simply test whether the match is found at i = 2. Thus all
the subsequences that pass the above test will move to the next
phase.

5. Implementation Issues in the PRIX System

Given the theoretical background in Section 4, we shall
move on to explain the implementation aspects of the PRIX
system.

5.1. Building Prüfer Sequences

In the PRIX system, Prüfer sequences are constructed for
XML document trees (with nodes numbered in postorder) us-
ing the method described in Section 3.1. Our proposed tree-to-
sequence transformation causes the nodes at the lower levels
of the tree to be deleted first. This results in a bottom-up trans-
formation of the tree. We shall show in our experiments that
the bottom-up transformation is useful to process query twigs
efficiently.

5.2. Indexing Sequences Using B -trees

The set of Labeled Prüfer sequences of the XML documents
are indexed in order to support fast subsequence matching for
query processing. Maintaining an in-memory index for the se-
quences like a trie is unsuitable, as the index size grows lin-
early with the total length of the sequences. In essence, we
would like to build an efficient disk-based index.

In fact, Prüfer sequences can be indexed using any good
method for indexing strings. In the current version of our PRIX
system, we index Labeled Prüfer sequences using B -trees in
the similar way that Wanget al.build a virtual trie using B -
trees [19].



5.2.1. Virtual Trie. We shall briefly explain the process of
indexing sequences using a virtual trie. Essentially, we provide
positional representations for the nodes in the trie by labeling
them with ranges. Each node in the trie is labeled with a range
(LeftPos, RightPos) such that the containment prop-
erty is satisfied [13]. Typically, the root node can be labeled
with a range

�� �� �� �� � �
. The child nodes of the root can

be labeled with subranges such that these subranges are dis-
joint and are completely contained in

�� �� �� �� � �
. This

containment property is recursively satisfied at every non-leaf
node in the trie. We can then obtain all the descendants of any
given node

�
by performing a range query that finds nodes

whoseLeftPos falls within the(LeftPos, RightPos)
range of node

�
.

In the PRIX system, for each element tag�, we build a B -
tree that indexes the positional representation of every occur-
rence of element� in the trie using itsLeftPos as the key.
We call this indexTrie-Symbol index. In addition, we store
each document (tree) identifier in a separate B -tree and index
it using theLeftPos of the node where the LPS ends in the
virtual trie as the key. This index is calledDocid index. Note
that it is sufficient to store only the LPS’s in the virtual trie.
The suffixes of the LPS’s need not be indexed at all, since all
the subsequences can be found by performing range queries on
theTrie-Symbol indexesas described in Section 5.3.

ViST proposed a dynamic labeling scheme that can assign
number ranges without building a physical trie (hence the name
virtual trie) on the set of sequences [19]. However, this dy-
namic labeling scheme suffers fromscope underflows[19] for
long sequences and large alphabet sizes, which makes it dif-
ficult to implement. In order to reduce the scope underflows,
we pre-allocatethe number ranges for a small subset of nodes
in the trie. The remaining nodes are assigned ranges using the
dynamic labeling scheme. In order to do so, we build an in-
memory trie for all the prefixes of the sequences of length�
(where� is a small number compared to the actual length of the
sequences). A node in this in-memory trie is allocated a num-
ber range based on thefrequencyand lengthof the sequences
whose prefixes share that node.

5.2.2. Space Complexity. The size of a trie grows linearly
with the total length of the sequences stored in it. In the PRIX
system, the length of a Prüfer sequence is linear in the number
of nodes in the tree. Hence the index size is linear in the total
number of tree nodes, while ViST does not guarantee a linear
worst-case bound on the index size. (Refer to Section 2.)

5.3. Filtering by Subsequence Matching

Let � � � � �
�� �

� 			� �


(a sequence of length�) de-
note the LPS of a query twig� . The process of find-
ing all occurrences of� � using the Trie-Symbol indexes
is shown in Algorithm 1. The algorithm is invoked by
FindSubsequence(� �

� � � � �� �� �� � ). A range query in
the open interval

��� � �
�
�

is performed on the��	
 (Trie-
Symbol index of� �

�
) (line 1). For every node id� returned

from the range query (line 1), if the sequence� � is found then
all the documents in the closed interval��� � ��

�
are fetched from

Algorithm 1: Filtering Algorithm

Input:
�� �

� � � ��� � ��
��

:
� �

is a query sequence; index;�� � � �� �
is a range;

Output:
�� � 
 �

; � is a set of document (tree) identifiers;
 denotes the positions of subsequence match;
procedureFindSubsequence(� �

� � � ��� � ��
�
)

1: � � � ��� ������ ���	
 � ��� � ��
��

;
2: foreach r in R do
3: 
 � � ��� �� �� �;
4: if (� � �� � �) then
5: � � ���� ������ ����������� � ��� � ��

��
6: output

�� � 
 �
;

7: else FindSubsequence(� �
� � � � � ��� � ��

�
)

end

the Docid index (line 5). (�� � �� ) is the positional representation
of node id�. (In this case�� � �.) Otherwise,FindSubse-
quence(.) is recursively invoked for the next element� � �

�

��

in the sequence using the range
��� � ��

�
. In line 3, the posi-

tion of match of the��� element of� � (i.e., level of node�
in the trie) is stored in
 . The solutions of the range query
in line 1 are the ids of nodes� � �

�

��

that are descendants of
nodes� �

�
in the virtual trie. In line 4, the algorithm outputs a

set of document (tree) identifiers� and a list
 . 
 contains the
positions in the LPS’s of trees corresponding to tree identifiers
in � where� � has a subsequence match.

It should be noted that the subsequence matching phase is
I/O bound. The total number of range queries issued in this
phase depends on the length of the sequence� � and �� � in Al-
gorithm 1. Our goal is to reduce the number of paths explored
in the virtual trie to find all the subsequences. From our ex-
periments, we observed that PRIX, by virtue of its bottom-up
tree transformation, performed fewer range queries than ViST
to process query patterns.

5.4. Optimized Subsequence Matching

In order to speed up subsequence matching further, it is de-
sired to reduce the number of range queries to be performed
by Algorithm 1 without causing any false dismissals. We can
achieve this by pruning some nodes (� in line 2 of Algorithm 1)
with an additional requirement on the gap between elements
corresponding two adjacent nodes in the query sequence. In
this regard, we have developed an upper-bounding distance
metric based on the property of Prüfer sequences.

Given a collection� of XML document trees and node la-
bel � in � , we define the distance metric on the pair

�� �� �
as

follows.

Definition 5 (MaxGap(e,�)) Maximum postorder gap of a
node label� is defined as the maximum of the difference be-
tween the postorder numbers of the first and the last children
of the node labeled� in � .

For example, in Figure 5, the difference in the postorder num-
bers of the first and last children of node label

�
is ��
� � � in

tree and is� 
 � � � in tree� . Hence
� ����� �� � � �� ��



(A,15)

(B,8) (C,14)

(C,3) (L,4) (E,7) (D,13)

(L,1) (L,2) (L,5)

(B,10)

(L,9) (L,11) (L,12)(L,6)

(B,12)

(C,9) (A,4) (F,11)

(L,1) (L,2) (L,3) (D,7) (L,8) (L,10)

(L,5) (L,6)

Tree P

LPS(Q) = A  A  A  B  D  D  C  C  B  F  B  
NPS(Q) = 4  4  4  12  7  7  9  9  12  11  12

Tree Q

LPS(P) = C  C  B  B  E  E  B  A  B  C  D  D  C  A
NPS(P) = 3  3   8  8  7  7  8  15  10  14  13  13  14  15 

Figure 5. Examples for MaxGap

is 6. If every occurrence of label� in � has at most one child,
then

� ����� �� �� � � �
.

We shall now explain the usefulness of this distance metric
for subsequence matching. Recall that in Lemma 1 we have
shown that the��� node to be deleted during the Prüfer se-
quence construction is the node numbered�. Consider tree 
in Figure 5. The deletion of node� (the first child of node�)
corresponds to the first� in LPS( ). The deletion of node�
(last child of node�) corresponds to the second� in LPS(P).
As can be observed in this example, the postorder gap between
the first and last children of a node� denotes how far apart the
first and last occurrences of its label (i.e., �) can be in the se-
quence. Furthermore, the last occurrence of a node’s label is
always followed by its parent node label.

Suppose that a node with label� is the parent of a
node with label� in a given query twig and�

�
� are

adjacent in the query sequence. The�� of this query
has eight matches in LPS( ) of Figure 5 at positions�� � � � � �� � � � � �� � �� � �� � �� � �� � �� � �� � � � � �� � �� � �� � � �. Each of
such number pairs represents an instance of�� match in the
data sequence. Since

� ����� �
�

� � �� ��
is �� 
 �� � �, the

gap between the first and last occurrences of� in the sequence
cannot be more than 3, and the gap between the first occurrence
of � and its parent� cannot be more than 4. Thus, among
the eight matches above, only four

�� � � � � �� � � � � �� � �� � �� � � �
may be considered for further processing. This example illus-
trates how

� �����
helps discard certain subsequences that

will definitely not be part of the final result.
The following theorem summarizes the use of the

� �����
as an upper-bounding distance metric for pruning the search
space and shortening the subsequence matching process.

Theorem 4 Given a query twig� and the set� of LPSs for
� , let

�
and� denote adjacent labels in LPS(�) such that

�
occurs before� .

1. In case node
�

is a child of node� in � , any subsequence�
� in � cannot result in a twig match, if its position pair�� � � � is such that

� 
 � � � ����� �� �� � � �.
2. In case node

�
is an ancestor of node� in � , any sub-

sequence
�
� in � cannot result in a twig match, if its

position pair
�� � � � is such that

� 
 � � � ����� �� �� �
.

It is straightforward to extend Algorithm 1 to incorporate the
upper-bounding distance metric by computing (
 � 
 
 ���

) (af-
ter line 3) and testing the appropriate condition in Theorem4
using

� �����
of label� ���

. Note that the
� �����

metric
can be defined at different levels of granularity. Finer-grained� �����

values can be stored in every occurrence of a symbol
in the virtual trie.

5.5. The Refinement Phases

The set of ordered pairs
�� � 
 �

returned by Algorithm 1
are further examined during the refinement phases. The steps
for the refinement phases are shown in Algorithm 2. The NPS
and the set of leaf nodes of� are read from the database and
passed as input to this algorithm. The input subsequence is
refined by connectedness (Theorem 4.2) in lines 1 through 4.
Note that this algorithm does not handle wildcards, but can be
easily extended (as mentioned in Section 4.5) by modifying
line 4. Next, the subsequence is refined by structure by testing
for gap consistency (Definition 3) in lines 5 through 11. The
subsequence is then tested for frequency consistency (Defini-
tion 4) in lines 12 through 15. Finally, the algorithm matches
leaf nodes of the query twig in lines 16 through 18. This
step can be eliminated by special treatment of leaf nodes in the
query twigs and the data trees [18]. In line 19 we report a twig
match.

5.6. Extended Pr̈ufer Sequences

The Prüfer sequence of a tree as described in Section 3.1
contains only the labels of non-leaf nodes. We call this se-
quenceRegular-Pr̈ufer sequence. If we extend the tree by
adding a dummy child node to each of its leaf nodes, the Prüfer
sequence of this extended tree will contain the labels of allthe
nodes in the original tree. We shall refer to this new sequence
asExtended-Pr̈ufer sequence. In the case of XML, all the value
nodes (strings/character data) in the XML document tree are
extended by adding dummy child nodes before transforming it
into a sequence. Similarly, query twigs are also extended be-
fore transforming them into sequences. We refer to the index
based on Regular-Prüfer sequences asRPIndex and the index
based on Extended-Prüfer sequences asEPIndex.

Indexing Extended-Prüfer sequences is useful for process-
ing twig queries with values. Since queries with value nodes
usually have high selectivities, Extended-Prüfer sequences pro-
vide higher pruning power than Regular-Prüfer sequences dur-
ing subsequence matching. As a result, during subsequence
matching, a fewer root-to-leaf paths are explored in the vir-
tual trie ofEPIndex than in the virtual trie ofRPIndex for
queries with values. If twig queries have no values, then in-
dexing Regular-Prüfer sequences is recommended. Note that
Extended-Prüfer sequences are longer than Regular-Prüfer se-
quences and the increase in length is proportional to the num-
ber of leaf nodes in the original tree.

In the PRIX system, bothRPIndex andEPIndex can co-
exist. A query optimizer can choose either of the indexes based
on the presence or absence of values in twig queries. It is easy
for a query optimizer to detect values in queries since SAX
parsers already have separate callback routines for values, at-
tributes and elements.

5.7. Ordered and Unordered Twig Matches

In PRIX, the Prüfer sequence constructed after numbering
a query twig in postorder, can be used to find all the ordered
twig matches. In order to find unordered matches, Prüfer se-
quence for different arrangements of the branches of the query



Algorithm 2: Refinement Algorithms

Input:
��� ��� ��� ��� � 
 �

:
��

is the NPS of tree� ;��
is the NPS of query twig;��
is a list of leaves in tree� ;��
is a list of leaves in

�
;


 is the positions of a subsequence match in LPS(� );
Output: report twig match;

procedureRefineSubsequence(�� ��� ��� ��� � 
 )
// Test for connectedness (Refinement By Connectedness)

1: � ��� � � �� ��� �
 � � ��� �
� � � 			��� �
 �� ��� �
2: for � � � to �
 � do
3: if

�� �
 � � 	
 � �� AND �� �� � � s.t.
�� �
 � � 
�� �
� � then

4: if �� �
 � � � 
 �

�

then return;
end

end
// Test for gap consistency (Refinement By Structure)

5: for � � � to �
 � 
 � do
6: ������� � �� �
 � � 
 �� �
 �


� �

;
7:

�������� � �� ��� 
 �� �� � ��;
8: if ((������� 
 � AND

�������� 	
 �) OR
(
�������� 
 � AND ������� 	
 �)) then

9: return;
end

10: else if������� � �������� � � then return;
11: else if ��������� � � �������� � then return;

end
// Test for frequency consistency (Refinement By Structure)

12: for � � � to �
 � do
13: for

� � � to �
 � AND
� � � do

14: if
�� �� 
 �� �� � AND

�� �
 � � 	
 �� �
� � then
15: return;

end
end
// Match leaves (Refinement By Matching Leaves)

16: foreach � in �� do
17: if l not found in

��
then

18: if l not found in LPS/NPS of Dthen return;
end

end
19: report twig match; return;

twig should be constructed and tested for twig matches. Since
the number of twig branches in a query is usually small, only
a small number of configurations (arrangements) need to be
tested. For more discussion in this regard, we refer our readers
to the extended version of this paper [18].

6. Experimental Results

In our experiments, we compared the query performance of
PRIX, ViST and TwigStack/TwigStackXB. We implemented
all the algorithms in PRIX, ViST and TwigStack/TwigStackXB
in C++, and used the B -tree implementation of GiST [10]
for all their indexes. For ViST, the symbol-prefix pairs in
the structure-encoded sequences were directly stored in the D-
Ancestorship B -tree.
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Figure 6. Elapsed time for XPath Queries in Ta-
ble 3

6.1. Experimental Setup

We ran all our experiments on 1.8GHz Pentium IV proces-
sor with 512 MB RAM running Solaris 8. A 40GB EIDE disk
drive was used to store the data and indexes. The code was
compiled using the GNU g++ compiler version 2.95.3. Direct
I/O feature available on Solaris was enabled to avoid operating
system’s cache effects. For all the experiments, the bufferpool
size was fixed at 2000 pages. The page size of 8K was used.
For PRIX and ViST, 8-byte number ranges were used to label
the nodes in the virtual trie. For TwigStack/TwigStackXB, 4-
byte number ranges were used to label the nodes in the XML
document trees.

6.2. Data Sets

We experimented with the datasets shown in Table 2. These
datasets were obtained from the University of Washington
XML repository [14]. We chose these three datasets since each
had a different characteristic. The document trees in the DBLP
dataset had good similarity in structure and were shallow. The
document trees in the SWISSPROT dataset were bushy and
shallow. The document trees in the TREEBANK dataset were
skinny and had deep recursions of element names. Table 2 pro-
vides additional information such as the maximum depth, the
number of elements and so on for the datasets. We constructed
Prüfer sequences and ViST’s structure-encoded sequencesfor
the collection of XML document trees on each dataset. Table 2
shows the number of sequences constructed for each dataset.

6.3. Queries

The XPath queries listed in Table 3 were tested in our ex-
periments. These queries have different characteristics in terms
of selectivity, presence of values and twig structure. Table 3
also shows the number of twig occurrences for each query. For



Dataset Name Size in MBytes # of Elements # of Attributes Max-depth # of Sequences
DBLP 134 3332130 404276 6 328858
SWISSPROT 115 2977031 2189859 5 50000
TREEBANK 86 2437666 1 36 56385

Table 2. Datasets

Query Dataset # of Twig Matches� � //inproceedings[./author=“Jim Gray”][./year=“1990”] DBLP 6� � //www[./editor]/url DBLP 21� �
//title[text()=“Semantic Analysis Patterns”] DBLP 1� �
//Entry[./Keyword=“Rhizomelic”] SWISSPROT 3� �
//Entry/Ref[./Author=“Mueller P”][./Author=“Keller M”] SWISSPROT 5� �
//Entry[./Org=“Piroplasmida”][.//Author]//from SWISSPROT 158� �
//S//NP/SYM TREEBANK 9� �
//NP[./RBROR JJR]/PP TREEBANK 1� �
//NP/PP/NP[./NNSOR NN][./NN] TREEBANK 6

Table 3. XPath Queries

Query PRIX ViST
Total time Disk IO Total time Disk IO� � 1.48 secs 185 pages 15.28 secs 3543 pages� � 0.05 secs 7 pages 0.15 secs 15 pages� �
0.07 secs 9 pages 22.07 secs 2280 pages

Table 4. DBLP - PRIX vs ViST

the TREEBANK dataset, since the values were encrypted, we
chose queries without values (character data).

6.4. Performance Analysis

In Figure 6 we summarize the performance results in total
time elapsed for the queries listed in Table 3. We first discuss
the benefits of PRIX over ViST.

6.4.1. PRIX vs ViST. In this section we compare the per-
formance between PRIX and ViST. We tested queries� �

, � �
and�	

for the DBLP dataset.� �
and� �

are twig queries
with five nodes and two branches, and with three nodes and
two branches, respectively.�	

is a single path query with two
nodes.� �

and�	
have values but� �

does not have any value.
PRIX performed significantly better than ViST for queries� �
, and�	

, and had comparable performance for query� �
.

Table 4 shows the total time taken and physical I/O (pages read
from disk) to process queries� �

, � �
and�	

. The presence
of values in ViST’s structure-encoded sequences reduces the
sharing of root-to-leaf paths in the trie. In the worst-case, every
sequence could cause a separate root-to-leaf path in the trie.
Furthermore, the presence of the root-to-node prefix in each
node of the structure-encoded sequences further reduces the
sharing in the trie.

Similarly, the presence of values in Extended-Prüfer se-
quences reduces the sharing of root-to-leaf paths in the trie.
However, thebottom-uptransformation of the query twig and
data in PRIX plays a crucial role in reducing the query process-
ing time. Since the selectivity of value nodes is usually higher
than that of element nodes, the labels at the beginning of the
LPS of a query twig may occur less frequently in the virtual trie

Query PRIX ViST
Total time Disk IO Total time Disk IO� �
0.29 secs 23 pages 9.52 secs 1757 pages� �
0.36 secs 49 pages 131.67 secs 128,150 pages� �
0.75 secs 86 pages 39.12 secs 6967 pages

Table 5. SWISSPROT - PRIX vs ViST

than the labels found later in the sequence. In such cases, only
a few paths in the virtual trie need to be examined to find all
the subsequences. This implies that a smaller number of range
queries are processed by Algorithm 1. In contrast, ViST’stop-
down transformation of a twig resulted in a large number of
nodes (paths) in the virtual trie being examined during sub-
sequence matching for commonly occurring tag names. For
example, tag namesauthor in � �

andtitle in �	
suffered

from this behavior. PRIX usedEPIndex to process queries� �
and �	

, and clearly outperformed ViST by up to a few
orders of magnitude. ViST processed query� �

comparably,
because there were only a few occurrences of tag namewww in
the DBLP dataset and hence only a feweditor descendants
in the trie. PRIX usedRPIndex for processing� �

and had
comparable performance.

For the SWISSPROT dataset, PRIX again clearly outper-
formed ViST for all queries� � , � � and� � . Query� � is a
simple path query with three nodes,� � is a twig query with
six nodes and two branches.� � is a twig query with five nodes
and three branches. These queries have values in them.

Table 5 shows the performance results for queries� � , � �
and� � . As mentioned earlier, ViST’s top-down transforma-
tion of the twig deteriorated the query processing considerably.
Tag namesRef in � � andOrg in � � resulted in many range
queries during subsequence matching. This increased the disk
I/O and slowed down the query processing. On the other hand,
PRIX usedEPIndex to process� � , � � and� � and processed
them efficiently. This demonstrates the advantage of bottom-
up transformation of PRIX once again.

Another drawback of ViST that we would like to point out is
the processing of queries with wildcards like’//’ for datasets
with recursions of elements. We tested queries� 	 , � 
 and



Query PRIX ViST
Total time Disk IO Total time Disk IO� �
0.42 secs 46 pages 198.40 secs 40,827 pages� �
0.35 secs 35 pages 672.20 secs 94,505 pages� �
0.50 secs 55 pages 767.24 secs 121,928 pages

Table 6. TREEBANK - PRIX vs ViST

Query TwigStack TwigStackXB
Total time Disk IO Total time Disk IO� � 20.74 secs 8756 pages 1.28 secs 201 pages� � 7.25 secs 2310 pages 0.49 secs 63 pages� �
6.17 secs 2271 pages 0.05 secs 8 pages

Table 7. DBLP - TwigStack vs TwigStackXB

� � on the TREEBANK dataset. These queries do not have
any values. Query� 	 is a single path query with three nodes
and two//’s, Query� 
 is a twig with two branches and three
nodes. Query� � has two branches and five nodes. Table 6
shows the performance results for queries� 	 , � 
 and� �.

ViST processed wildcards in� 	 the following way. The
D-Ancestorship index was first searched for all (S, //) keys.
Thus, every key withS as its symbol was matched. The tag
nameS occurred at different levels in the TREEBANK dataset,
in addition to occurring frequently in the dataset. This resulted
in many unique (symbol, prefix) key matches to begin with. In
all,  � unique (symbol, prefix) keys were matched in the D-
Ancestorship index during the processing of� 	 . In addition,
there were several occurrences of each (symbol, prefix) key.
Thus many paths in the virtual trie were searched for subse-
quences. Similar was the case for query� 
 since the tag name
NP occurred frequently and at different levels in the TREE-
BANK dataset. In this case,

�� � � unique (symbol, prefix)
keys were matched in the D-Ancestorship index during the pro-
cessing of� 
 .

PRIX usedRPIndex to process queries� 	, � 
 and� � and
outperformed ViST once again. The bottom-up transformation
of the query twig resulted in only a few paths being searched
in the virtual trie. Note that in our PRIX system, the presence
of wildcards does not add extra overhead during subsequence
matching. (Refer to Section 4.5.)

6.4.2. PRIX vs TwigStack/TwigStackXB. In this section,
we compare the performance of PRIX and TwigStackXB.
TwigStackXB uses XB-Trees to skip nodes in the sorted input
stream. Note that for all the queries in Table 3 that we tested,
TwigStack performed worse than TwigStackXB. Table 7 shows
the performance results for TwigStack and TwigStackXB for
the DBLP dataset. Other results for TwigStack have been omit-
ted due to lack of space.

Query PRIX TwigStackXB
Total time Disk IO Total time Disk IO� � 1.48 secs 185 pages 1.28 secs 201 pages� �
0.36 secs 49 pages 0.33 secs 59 pages� �
0.42 secs 46 pages 0.47 secs 51 pages

Table 8. PRIX vs. TwigStackXB for � �
, � �, � 	

Query PRIX TwigStackXB
Total time Disk IO Total time Disk IO� � 0.05 secs 7 pages 0.49 secs 63 pages� �
0.75 secs 86 pages 3.10 secs 485 pages� �
0.35 secs 35 pages 1.93 secs 310 pages

Table 9. PRIX vs TwigStackXB for � �
, � �, � 


For queries� �
, �	

, � �, � � , � 	 , and� � , both PRIX and
TwigStackXB yielded comparable performance. Table 8 shows
the performance results for queries� �

, � � , � 	. Similar trend
in performance was observed for queries�	

and� � . (Refer to
Figure 6.) As expected, TwigStackXB processed these queries
efficiently, because the solutions for those queries were clus-
tered in certain regions of the data and the XB-Trees were ef-
fective in skipping nodes in the input streams. On the other
hand, PRIX also processed these queries efficiently using its
bottom-upprocessing strategy.

We now analyze the query performance of PRIX and
TwigStackXB for queries� �

, � � and� 
 shown in Table 9. We
compared PRIX and TwigStackXB under two different scenar-
ios namelydistribution of possible solutions in the datasetand
sub-optimality for parent/child relationships.

Distribution of Possible Solutions in the Data Set The ef-
fectiveness of skipping input data using XB-Trees is depen-
dent on the distribution of matches in the dataset. Further-
more, if the nodes in different branches of a query twig occur
in different but nearby documents in the input data, then the
TwigStackXB algorithm is forced to drill down to the lower re-
gions of the XB-Trees (and possibly leaves) to verify whether
these nodes represent a match. Queries� �

and� � were tested
for the behavior.

In the case of� �
, tag namewww was scattered in the DBLP

dataset. The other two tag names in� �
namelyeditor

andurl occurred frequently in the dataset and were present
around the documents withwww elements in the input data.
This caused TwigStackXB to drill down to the lower regions of
the XB-Trees several times, in order to eliminate these nodes
from the solution set. This process increased the disk I/O.

On the other hand, PRIX (usingRPIndex) processed� �
several times faster than TwigStackXB. The XML documents
in the DBLP dataset had good similarity in terms of tree struc-
ture. This resulted in sharing of root-to-leaf paths in the vir-
tual trie by several Regular-Prüfer sequences. For example,
one root-to-leaf path in the virtual trie was shared by� � � ���
Regular Prüfer sequences. As a result, the total number of
nodes in the virtual trie was reduced considerably. Thus only
a few range queries were required to find all the subsequence
matches for processing query� �

.
PRIX (usingEPIndex) also processed� � several times

faster than TwigStackXB. In the SWISSPROT dataset that we
used, documents with patternEntry/Org/Piroplasmida
were scattered in the input data. But only a few of these doc-
uments had bothAuthor andfrom tags as descendants of
Entry. In addition, the tagsAuthor andfrom occurred fre-
quently and were present in other documents near the the doc-
uments containingPiroplasmida in the input data. As a



result, TwigStackXB was forced to drill down to lower regions
(including leaves) of the XB-Trees several times in order to
eliminate such partial matches. This caused an increase in IO
and slowed down query processing. However, PRIX was able
to quickly eliminate these partial matching documents during
subsequence matching as they shared a root-to-leaf path in the
virtual trie.

Sub-Optimality for Parent/Child Relationships We tested
query� 
 to demonstrate the fact that TwigStack/TwigStackXB
can suffer from sub-optimality for parent/child edges (’/’) in
a query twig. (Refer to Section 2.) Query� 
 has parent-child
edges in it. As expected, PRIX (usingRPIndex) processed� 
 several times faster than TwigStackXB.

In the TREEBANK dataset that we used, there were sev-
eral similar documents scattered in the input data that had tag
nameNP as an ancestor (but not the parent) of tag namesPP
and RBR OR JJR. TwigStackXB matched these documents
as possible solutions due to sub-optimality. On the other
hand, PRIX (usingRPIndex) was able to quickly elimi-
nate these false alarms during subsequence matching by us-
ing the upper-bounding distance metric associated with tag
nameRBR OR JJR. (The

� �����
of RBR OR JJRwas zero

in this case.) Tag nameNP did not occur immediately af-
ter RBR OR JJR in the LPS of those documents that were
falsely matched by TwigStackXB. TwigStackXB discards such
matches during the merge post-processing step.

7. Conclusions and Future Work

In this paper, we have presented a new paradigm for XML
pattern matching. We transform XML documents into Prüfer
sequences. To find all occurrences of a query twig, subse-
quence matching is performed on the set of sequences followed
by a series of refinement phases. We also provide theoretical
background to show the correctness of our approach. Unlike
most state-of-the-art techniques, our approach processestwig
queries without breaking them into root-to-leaf paths and pro-
cessing them individually. We also provide empirical results
to demonstrate the efficient processing of twig queries by the
PRIX system. As part of future work, we would like to explore
the behavior of the PRIX system for different query charac-
teristics such as the cardinality of result sets, and analyze the
complexity of query processing time.
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[17] H. Prüfer. Neuer Beweis eines Satzes über Permutationen.
Archiv für Mathematik und Physik, 27:142–144, 1918.

[18] P. Rao and B. Moon. PRIX: Indexing And Querying XML Us-
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