
www.elsevier.com/locate/datak

Data & Knowledge Engineering 48 (2004) 75–101
Adaptive cell-based index for moving objects

Wonik Choi a,*, Bongki Moon b, Sukho Lee a

a Database Research Laboratory, ENG4190, Seoul National University, Seoul 151-744, South Korea
b Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA

Received 4 June 2002; received in revised form 29 January 2003; accepted 7 May 2003
Abstract

R-tree based access methods for moving objects are hardly applicable in practice, due mainly to excessive

space requirements and high management costs. To overcome the limitations of such R-tree based access

methods, we propose a new index structure called AIM (Adaptive cell-based Index for Moving objects). The
AIM is a cell-based multiversion access structure adopting an overlapping technique. The AIM refines

cells adaptively to handle regional data skew, which may change its locations over time. Through the ex-

tensive performance studies, we observed that The AIM consumed at most 30% of the space required by

R-tree based methods, and achieved higher query performance compared with R-tree based methods.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Moving objects; Spatio-temporal databases; Overlapping technique; Multiversion access structure; Cell-

based access structure

1. Introduction

Spatio-temporal databases represent, store and manipulate data objects that may change their
spatial locations and/or their shapes over time. Due to the geometric and time-varying charac-
teristics, special techniques are often required for efficient storage of and access to spatio-temporal
objects.
Recently, there have been many research efforts to develop strategies for indexing and querying

moving objects. Among the most fundamental types of queries are time-slice or time-interval
queries, which retrieve all objects that intersect a certain region in space at a specific time point or
* Corresponding author.

E-mail addresses: styxii@db.snu.ac.kr (W. Choi), bkmoon@cs.arizona.edu (B. Moon), shlee@cse.snu.ac.kr (S. Lee).

0169-023X/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0169-023X(03)00120-4

mail to: styxii@db.snu.ac.kr

76 W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101
interval. Another type of common queries is a trajectory retrieval, which aims at efficient retrieval
of line segments representing trajectories of moving objects. Most of the techniques proposed to
handle these types of queries are variants of the R-tree index to process time-slice and time-
interval queries [15,26,29] and trajectory retrieval queries [17].
However, we have observed a few critical limitations in the hierarchical access methods. First,

an R-tree based index may require high management cost to track mobile objects. The contem-
porary technologies for global positioning and wireless telecommunications allow us to sample
the position of a moving object at discrete instances of time during each sampling period. The
sampled positions are transmitted via wireless network to a central server and stored in a data-
base. This amounts to frequent updates to the database for a potentially large number of mobile
objects that continuously change their coordinates. Frequent updates made to an R-tree index
may lead to deteriorated performance due to a significant amount of overhead to split and merge
nodes and increased overlap between minimum bounding rectangles (MBR). For mission-critical
applications, this can make it difficult for an R-tree index to keep up with certain operational
requirements.
Second, the performance of an R-tree based index tends to deteriorate as the degree of data

skewedness increases. Consider a highway traffic monitoring system as an example. A number of
vehicles may move along the same paths. This may lead to a few small but extremely dense data
regions, where there are many overlapping MBRs, which in turn limits the indexability to prune
space and objects during a tree traversal. In this case, an index based on space partitioning seems
to be more suitable than that based on data partitioning.
Furthermore, the storage requirement of an R-tree based index is typically high enough to

make it less practical to store historical databases, which tend to grow large rapidly. For example,
the size of an R-tree that stores trajectories of 1000 objects (about 1.5 million line segments) was
about 95MB [17]. It appears quite obvious that the size of an R-tree based index may grow too
fast to be used for large-scale applications in practice.
To overcome the limitations of hierarchical access methods, we propose a new index structure

called AIM (Adaptive cell-based Index for Moving Objects). The AIM index consists of two main
structures: MO-Cube and MO-Trace. The MO-Cube (Moving Objects––Cube) is a cell-based
adaptive index structure to handle spatio-temporal range searches. The MO-Trace (Moving
Objects––Trace) is a trajectory warehouse that stores time-varying positions of moving objects
(i.e., trajectories), and is used for retrieving trajectories after range searches of objects. This two-
body structure uses both overlapping and multiversion techniques to produce a time and
space efficient index structure, and is particularly useful for processing various spatio-temporal
queries.
TheMO-Cube partitions an embedding space–time into a set of fixed-size grid cells to form a

cube that keeps growing along the time dimension. Each grid cell stores a bucket of moving
objects in its corresponding subspace. TheMO-Cube does not change its basic grid cell structure
at each sampled time. Instead, it can refine cells in certain regions to handle data skew by
adaptively partitioning cells into smaller sub-cells. Such refined cells can appear and disappear
anywhere in the grid, as the mobile objects move around in the space and skewed data regions
change over time. The rationale of theMO-Cube design is to combine the benefits of quadtree
(for space decomposition) and hashing method (for bucket storage), without sharing their
shortcomings.

W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101 77
To minimize the storage requirement, the MO-Cube uses an overlapping technique. When a
new set of sampled data is added to theMO-Cube, new cells can share data buckets with old cells
if the positions of the mobile objects in the old cells remain unchanged. Thus, new data buckets
are created only when it needs to accommodate changes made to the data set sampled previously.
The MO-Trace stores the entire trajectories of moving objects in a space-efficient way. The

space efficiency is important because historical databases like such trajectories tend to grow large
rapidly.
For the aforementioned reasons, we believe that the AIM is much better suited for indexing

moving objects than R-tree based approaches. Main contributions of this work are:

• To the best of our knowledge, this work is the first attempt to develop a cell-based adaptive
index structure for storing and indexing moving objects for time-slice, time-interval and trajec-
tory queries.

• The proposed cell-based adaptive index, augmented with an overlapping technique, reduces the
storage requirement up to an order of magnitude compared with R-tree based hierarchical ac-
cess methods.

• This cell-based adaptive index processes spatio-temporal queries for moving objects up to two
orders of magnitude faster than R-tree based hierarchical access methods.

The rest of the paper is organized as follows. In Section 2, we survey related work, discuss their
advantages and analyze their problems. Section 3 presents the design principles of the AIM and
Section 4 describes the structure of the MO-Cube and MO-Trace in detail. In Section 5, we
provide a detailed description of algorithms for loading and querying. Section 6 contains an
extensive experimental evaluation. Finally, Section 7 summarizes the contributions and provides
directions for further research.
2. Related work

To store and retrieve the past, current and future locations of moving objects, several research
efforts have been reported in the literature. A detailed survey on spatial-temporal databases can be
found in [1]. For data models and query language for moving objects see [8,20]. In this section, we
briefly survey the previous work, which is mostly based on hierarchical index structures such as R-
trees and quadtrees. Depending on the type of data being stored, the following two categories
exist: (a) indexing the past and current positions of moving objects and (b) indexing the current
positions of moving objects and predicting the future positions based on their current position
and motion pattern. Our work belongs to the former category.

2.1. Indexing past and now

The RT-tree [29] couples time intervals with spatial ranges in each node of the tree structure.
That is, in addition to its spatial extent, each node contains the time interval during which the
corresponding object is alive. The RT-tree adopts ideas from the R-tree and the TSB-tree [13].
Searching or splitting in RT-tree nodes is only guided by the spatial information; the time

78 W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101
information plays a secondary role. This makes the RT-tree inefficient, when queries are processed
based on the temporal domain, as they would require a complete scan of the index.
The 3D R-tree [26] treats time as another dimension. This is probably the most straightforward

way to index spatio-temporal data. The 3D R-tree is very space-efficient since it stores only the
different object versions without redundant copies. Since the temporal attributes and the spatial
attributes are tightly integrated in 3D R-tree nodes, a time-interval query can be treated as an
ordinary window query and thus can be processed very efficiently. However, the performance of
time-slice queries can be poor, since all objects are indexed in a single tree and thus the query
processing time will depend on the total number of entries in history.
The MR-tree, the HR-tree [15] and the Overlapping Linear quadtree [27] are all based on the

concept of overlapping trees. Burton et al. [5,6] proposed the concept of overlapping trees to index
text files evolving over time. Later, the idea was applied to handle the evolving Bþ-tree [14].
Recently, this technique was extended to R-trees and quadtrees, to index moving spatial objects
[15,27]. The basic idea is that, given two trees where the second one is an evolution of the first one,
the second tree can be represented by registering only the modified branches of the first one. That
is, only the modified branches are actually created and the branches that do not change are simply
re-used, while each tree keeps a root of its own. Fig. 1(a) illustrates an example of the HR-tree.
Since the MR-tree and the HR-tree are very similar in nature, we briefly describes the HR-tree

only. The HR-tree can handle a time-slice query very efficiently since time-slice queries are pro-
cessed inside the corresponding R-tree only. For time-interval queries, however, it can be very
slow, because time-interval queries require searching as many trees as the number of distinct
timestamps in the interval. Although the HR-tree adopts an overlapping techniques, the benefit
tends to be limited, because even a single object moving between two consecutive timestamps may
cause the replication of multiple nodes. Thus, the size of the HR-tree can be still prohibitive for
practical applications.
Recently, Tao and Papadias proposed the MV3R-tree [22], a structure that combines the con-

cepts of multiversion B-trees and 3D R-trees. Fig. 1(b) illustrates the structure of the MV3R-tree.
The key idea is to utilize a multiversion R-tree for time-slice queries and a 3D R-tree for time-
interval queries. Although the MV3R-tree can deal efficiently with both time-slice and time-
interval queries by combining the benefits of both structures, the MV3R-tree requires more space
than the 3D R-tree and still needs high management cost due to the combination of the MVR-tree
and the 3D R-tree.
We will now examine the access methods that store trajectories as line segments aiming at

processing trajectory queries and spatial range queries. Pfoser et al. proposed the STR-tree by
adopting three-dimensional R-trees to store line segments of point trajectories bounded by cubes
[17]. The STR-tree is an extension of the R-tree to support query processing for the trajectories of
3D R-tree
MVR-tree

(b)(a)

timestamp t
0 timestamp t1

Fig. 1. Structure of (a) HR-tree and (b) MV3R-tree.

W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101 79
moving objects. The insertion procedure in the STR-tree considers spatial proximity and partial
trajectory preservation. That is, the STR-tree tries to keep line segments belonging to the same
trajectory together. Also, the authors proposed the TB-tree, which aims for an access method that
strictly preserves trajectories such that a leaf node only contains line segments belonging to the
same trajectory. Although the TB-tree supports trajectory queries much more efficiently than the
R-tree does, its performance on time-slice and time-interval query is worse than the R-tree for a
large number of moving objects since the TB-tree does not consider spatial discrimination. As for
the STR-tree, although designed to combine the benefits of the TB-tree and the R-tree, it usually
performs worse than the TB-tree and is rather a weak compromise.

2.2. Indexing now and future

There have been quite a few related research efforts on the indexing of the current and antici-
pated future positions of moving objects. Most of the work aimed at reducing update cost, and
used a simple linear function [18,23] or a data transformation [2,11] to describe the movements of
moving objects. We will briefly survey the work which is closely related to our approach.
Song and Roussopoulos proposed an access method based on a hashing technique that stores

the bucket information of each object instead of its exact location [21]. This index structure re-
mains unchanged until an object moves into a new bucket. Therefore, the update cost is greatly
reduced. However, this method does not make any provision for handling queries other than the
current locations. Kwon et al. also aim at indexing the current positions only [12]. They proposed
the LUR-tree (Lazy Update R-tree) to reduce update cost by modifying the index structure only
when an object moves out of the corresponding MBR.
More recently, Chon et al. have developed a space–time partitioning model where the trajectory

of a moving object is modeled as a polyline [7]. In reality, the trajectory of a moving object is the
result of the interactions among all moving objects. They took these factors into account, and thus
aimed at the better management of dynamic information about moving objects and accurate
prediction of their trajectories. This work was based on a grid as we do, but focused on querying
the future positions of moving objects.
3. Design of the AIM

In this section, we describe what assumptions we make and present a sample application scen-
ario. Types of queries the proposed AIM index aims at are also described.

3.1. Design principles

Theodoridis et al. proposed a specification and classification scheme for spatio-temporal access
methods (STAMs), and suggested a list of specifications that can be followed by an STAM [24].
They addressed issues on data types and characteristics, index construction, and query processing
operations. A few existing proposals such as RT-tree, HR-tree and 3D R-tree were evaluated
according to the specifications. We adopt the same scheme to precisely describe the specifications
of the AIM index.

80 W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101
Table 1 summarizes the specifications of the AIM and compares with other existing STAMs.
The AIM index considers point objects moving in a discrete manner within a data space. In this
paper, we assume that a point moves in a two-dimensional space; our approach can be easily
expanded into a three-dimensional space. The support of region data type needs further in-
vestigation and we leave it as future work. We support transaction-time. The timestamp of
each point increases monotonically following a transaction-time pattern. Since both the cardi-
nality of the data set and the object locations may change with time, the AIM is classified as
full-dynamic. In addition, only current instances are dynamically inserted into the AIM
index (chronological).
All STAMs in Table 1 except the AIM are based on R-trees and variants, which approximate

spatial objects by their MBRs. Since objects move around in the work space, their MBRs tend to
include considerable dead spaces and overlap each other. This fact in turn leads to inefficient
indexing. In contrast, the AIM does not use MBRs at all, but instead it stores an exact location
of each moving object. Note that in the Spec6 entry of Table 1, the AIM is the only index that
efficiently handles a purge operation for obsolete objects. In fact, R-tree based index structures
have been known for their lack of efficient mechanisms for deleting obsolete objects [10].

3.2. An application scenario

With the rapid and continued advances of positioning systems such as GPS and wireless
communication technologies, tracking and recording the changing positions of objects are be-
coming increasingly feasible. The need for indexing moving objects and processing various type of
spatial-temporal queries arises in a wide range of moving-objects-database (MOD) applications,
including traffic supervision systems and transportation systems in the civilian industry, digital
battlefields in the military [28]. As an example consider the traffic supervision systems, which
monitor the location and motion patterns of vehicles in order to provide services such as con-
gestion detection, optimal route guidance and so on. Each vehicle is equipped with a GPS device,
and automatically and periodically transmits its position to a server at regular intervals using
either radio communication link or cellular phones. The server stores these current positions of all
vehicles which constitute the trajectory of moving object, and processes spatial-temporal queries.
Our objective is to minimize the management cost and the storage requirement for such an ap-
plication. In addition, we aim at efficient processing of the following types of queries: time-slice
query, time-interval query, and trajectory query.

• Time-slice query retrieves all moving objects within a certain region at a specific time slice.
• Time-interval query retrieves all moving objects within a certain region at a specific time inter-
val.

• Trajectory query retrieves (partial) trajectories of moving objects that satisfy a certain condition
specified in a spatio-temporal domain. For example, ‘‘For all flying objects that passed through
the Area-59 between 8:30 am and 9:00 am on November 2, 2001, find their trajectories during
the period from 9:00 am till 10:00 am on the same date.’’

Typically, trajectory queries can be processed in two steps. The first step is to retrieve object
IDs based on a spatio-temporal condition, such as ‘‘Area-59 between 8:30 am and 9:00 am on

Table 1

Evaluation of the AIM and existing STAMs

HR-tree 3D R-tree TB/STR-tree MV3R-tree AIM
Spec1: Data types supported region region region region point

Spec2: Type of time supported transaction valid valid transaction transaction

Spec3: Data set mobility full-dynamic growing full-dynamic full-dynamic full-dynamic

Spec4: Time-stamp update chronological static chronological chronological chronological

Spec5: Specific object approximation YES NO YES YES NO

Spec6: Handling

‘obsolete’ entries

NO NO NO NO YES

Spec7: Specific query processing

operations

YES YES YES YES YES

W
.
C
h
o
i
et
a
l.
/
D
a
ta
&
K
n
o
w
led
g
e
E
n
g
in
eerin

g
4
8
(
2
0
0
4
)
7
5
–
1
0
1

8
1

82 W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101
November 2, 2001’’ in the example. In the second stage, the corresponding trajectories of the
objects are retrieved by limiting the scope of the trajectories, with an additional temporal range
such as ‘‘during the period from 9:00 am till 10:00 am on the same date.’’
4. The structure of the AIM

Formally, in our proposed AIM index structures, moving objects are modeled within grid
cells. A moving object M moves in a three-dimensional space X � Y � T , where X ¼ ½x0; xn	1
,
Y ¼ ½y0; yn	1
 and T ¼ ½t0; tp	1
. The three-dimensional space is partitioned into grid cells such
that
X ¼ ½x0; x1Þ [½x1; x2Þ [

 [½xn	2; xn	1
;

Y ¼ ½y0; y1Þ [½y1; y2Þ [

 [½yn	2; yn	1
;

T ¼ ½t0; t1Þ [½t1; t2Þ [

 [½tp	2; tp	1
;
where tp means now timestamp. The lifespan of each cell is ½ti; tiþ1Þ.
The position of M at a certain point in a time dimension T is a point in a three-dimensional

space X � Y � T . Thus, the trajectory of M is a polyline in a three-dimensional space X � Y � T .
The part of the trajectory is defined as follows:
mðuÞ ¼
[q
i¼0

li; ð1Þ
where li ¼ fhxi; yi; tii; hxiþ1; yiþ1; tiþ1ig and u is an identifier of group of line segments. An element
hxi; yi; tii is the ith version of position of MðidÞ. Thus, the trajectory of MðidÞ is a set of groups of
line segments mðuÞ, and is modeled as follows:
MðidÞ ¼
[v
u¼0

mðuÞ: ð2Þ
When we refer to a specific grid cell ½xi; xiþ1Þ � ½yj; yjþ1Þ at a certain time ½tk; tkþ1Þ, we use the
notation g½c
k, which c is a cell number from an address function Gðxi; yjÞ.
A grid cell g½c
k is modeled as a set of hid; ui:
g½c
k ¼ fhid; uiju 2 U ; id 2 ID; such that 9l in mðuÞ intersects g½c
 during ½tk; tkþ1Þg; ð3Þ

where U is a set of identifier of group of line segments and ID is a set of unique identifier of
moving objects.
Based on the grid model, we build two data structures MO-Cube and MO-Trace, which

constitute the AIM index. This two-body design of the AIM index is particularly useful for
processing trajectory queries, because trajectory queries are typically processed in two stages as
shown in the previous section. That is, theMO-Cube is used in the first stage, and theMO-Trace
in the second stage. Of course, theMO-Cube alone can process spatial-temporal range searches
efficiently.

W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101 83
4.1.MO-Cube

4.1.1.MO-Cube as a pile of slices
The MO-Cube is a collection of MO-Slices, each of which serves as an index for a set of

moving objects at a specific time interval. Fig. 2 illustrates the structure of theMO-Cube. Each
bucket ofMO-Slice consists of three parts: Bucket Set, Time Array and Refinement Array. The
Bucket Set stores the buckets corresponding timestamps, and is implemented as an append-only
file with a consecutive set of disk pages. When new versions of the position of moving objects are
sampled, the entries for each moving objects are added to its corresponding cell (or bucket). All
those buckets of theMO-Slice then are collectively appended to the corresponding Bucket Set.
Each entry for a moving object in a bucket has the form hid; ptri as shown in Eq. (3), where an id
is the identifier of the moving object and a ptr points to a page of theMO-Trace, which contains
the line segments intersected with the bucket.
The Time Array represents a time domain of a bucket, and is used for finding a bucket cor-

responding to its grid cell at a specific timestamp. The Time Array contains offsets of buckets
within a Bucket Set, and is represented by a one-dimensional array. The Refinement Array is an
array that stores the metadata of cell refinement. The details of the cell refinement will be discussed
in Section 4.1.2.
Initially, aMO-Slice is partitioned to Cð¼n� nÞ cells. The choice of C value may have non-

trivial impact to the performance of the AIM index in storage utilization and query processing.
Bentley et al. show that a nearly optimum size for the cells are the same as those of the
query window size [4]. In most applications, however, the queries will vary in size as well as in
location, so there is little information available for making a good choice of cell size. Thus we
propose the following alternatives to choose C: (1) one based on the population of moving
objects, and (2) the other based on the maximum distance that an object can move during a given
time period.
The C value can be determined rather intuitively by identifying an ideal number of objects per

cell. Suppose there are a total of N moving objects to index, and a disk page can store up to E
entries. Then, C can be chosen to be
Fig. 2. Structure of theMO-Cube.

84 W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101
C ¼
ffiffiffiffi
N
E

r& ’ !2

: ð4Þ
Alternatively, if the maximum velocity of all moving objects is known, they can be used to
determine the C value. The idea is that if a moving object stays in the same cell for a longer period
of time, then it is more probable that the bucket of the cell may be reused by an overlapping
technique. That is, C can be set to the maximum distance an object can move between two
consecutive timestamps. The overlapping technique will be discussed in Section 4.1.3.

4.1.2. Adaptive cell refinement
Mobile objects are dynamic by nature. The distribution of mobile objects is not predictable and

may be skewed. Data skew can cause a data bucket in a dense region to overgrow in size, which in
turn can lower the efficiency in data accesses. To address the data skew problem, we refine grid
cells adaptively depending on the data population of cells.
If the number of mobile objects in a cell exceeds E (the maximum number of entries per cell)

and its bucket overflows, the overcrowded cell is partitioned recursively and the mobile objects in
the cell are split across the sub-cells until there is no sub-cell whose population is larger than E.
Note that there is no explicit merge operation defined for theMO-Cube, because theMO-Cube is
designed to be an append-only index structure. Fig. 3 illustrates the adaptive cell refinement. At
time t0, none of the cells are overcrowded and refined. On the other hand, cell 6 and cell 9 become
overcrowded at time t1 and t2, respectively. Thus, cell 6 is partitioned to 4 sub-cells, and cell 9 is
partitioned to 16 sub-cells. When a cell is refined, its entry in the Time Array stores a pointer to a
corresponding entry in the Refinement Array and the level of cell refinement, instead of a pointer
to a data bucket.
By adaptively refining grid cells, we can accelerate query processing for time-slice and time-

interval range queries. When a query region overlaps a sub-cell, only a part of a data bucket needs
to be accessed to answer the query without retrieving all moving objects in the data bucket.
Fig. 3(b) shows the storage structure of the MO-Cube example given in Fig. 3(a). The Time

Array6 for cell 6 at time t0 points directly to the corresponding data bucket, because cell 6 is not
refined. However, the Time Array6 at time t1 points to the Refinement Array6 instead, because cell
6 is refined to 4 sub-cells. Each entry in the Refinement Array6 points to a data bucket corre-
sponding to a sub-cell. In a similar way, the Time Array9 for cell 9 at time t2 points to the 16
Fig. 3. Adaptive Cell Refinement.

W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101 85
entries in the Refinement Array9. By using the Refinement Array9, the adaptive cell refinement
technique can help reduce query processing cost significantly.

4.1.3. Overlapping theMO-Slices
TheMO-Cube adopts an overlapping technique [5,6]. For each cell, severalMO-Slice instances

are constructed at different timestamps. However, in order to save disk space, common data
buckets of two consecutiveMO-Slices may be combined without data replication, if the contents
of two buckets are identical. In the example shown in Fig. 4, only one (gray) of the four buckets
has changed. Hence, theMO-Slices at timestamp t0 and t1 in Fig. 4(a) and (b) can be stored in a
more compact manner as shown in Fig. 4(c). The implementation of overlappingMO-Slices is
also illustrated in the right side of Fig. 2. For the cell number c, both the offset3 and offset4 (for
timestamps t3 and t4, respectively) point to the same bucket in the Bucket Set, because the entries
in the cell remain unchanged.
In addition to the overlapping technique, a multiversion technique has been applied on various

index structures such as B-tree, R-tree and linear quadtrees to support versioning databases.
These index structure adopt overlapping or multiversion technique may share common branches in
order to avoid excessive space requirements. To quantify the space savings from the overlapping
and multiversion technique, we define the reuse rate in the practical perspective of the space
savings as follows:
R ¼ 1

�
	 jTijjT 0i j

	
� 100 ðjTij6 jT 0i jÞ; ð5Þ
where jTij is the index size with the overlapping or multiversion technique at timestamp i and T 0i
without the overlapping or multiversion technique. This formula will be used to measure space
savings in Section 6.5.

4.1.4. Discussion
The basic idea of theMO-Cube is similar to that of the quadtree [9,19], in the sense that it is

based on the principle of recursive space decomposition. An important difference, however, is the
fact that the quadtree, basically, is a main memory structure which is less suited for large spatio-
temporal databases. Moreover, since the quadtree is based on unbalanced n-ary trees, subtrees
corresponding to densely populated regions may be deeper than others, which in turn may incur a
significant degradation of query performance.
From another point of view, the structure of theMO-Cube is also similar to that of the gridfile

[9,16]. The main difference between theMO-Cube and the gridfile is the fact that the gridfile has a
Fig. 4. OverlappingMO-Slices.

86 W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101
grid directory and suffers from a super linear growth of the grid directory even for uniformly
distributed data sets. As mentioned briefly in Section 1, the rationale of theMO-Cube design is to
combine benefits of the quadtree and the gridfile without inheriting any of their shortcomings.
One of the most important properties that multidimensional access methods should possess is

the independence of the distribution of data sets. Multidimensional access methods should pro-
vide a facility to maintain their efficiency even when the data sets are highly skewed. From this
point of view, it is true that hierarchical access methods such as R-trees can handle highly skewed
data sets more efficiently than hashing based methods can. At the same time, it is worth men-
tioning that its storage utilization of nodes is higher than that of data buckets for hashing
methods. TheMO-Cube may also have these problems, too. But their effects may be mitigated by
the methods presented in the previous subsections. First, in order to alleviate the problem
stemming from skewed data sets, theMO-Cube employs the adaptive cell refinement scheme as
described in Section 4.1.2. As the results from our experiments will show, this scheme can help
handle highly skewed data sets in a satisfactory way. In addition, the MO-Cube is augmented
with the overlapping technique as described in Section 4.1.3 in order to improve storage utili-
zation.

4.2.MO-Trace

Although R-tree based methods are known for their effectiveness in indexing for a wide
spectrum of spatial database applications, they are not particularly well suited for trajectory
queries, because the trajectory queries require keeping track of chronological positions of given
mobile objects at each point in time. It would be quite costly if an R-tree index should be traversed
to find each position of an object. To avoid such disadvantages of R-tree based methods, we take
an entirely different approach calledMO-Trace as shown in Fig. 5.
TheMO-Trace is a simple but elegant storage structure that is designed to be space-efficient

and capable of retrieving a sequence of chronological positions of a mobile object in a straight-
Fig. 5. Structure of theMO-Trace.

W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101 87
forward manner. TheMO-Trace implements the model of the trajectory which is shown in Eqs.
(1) and (2). A new version of the position of moving objects obtained from data sources such as
GPS is appended to the page which is pointed to by the ID directory. For given objects and their
IDs, the ID directory is used to find the current pages for them. Then the sampled positions of
objects are written to the current pages. The ID directory can be implemented using one-
dimensional array or hash tables. Each entry in a page has the form hidi; tii where idi denotes the
position of an object at timestamp ti. The two consecutive entries constitute a line segment, i.e.,
hidi; tii 	 hidiþ1; tiþ1i. These line segments constitute a group of line segments, which correspond to
a disk page as shown in Fig. 5. We choose a doubly linked list that connects pages including
segments of the same trajectory. Therefore, in addition to the entries, each page has elements, such
as prevPtr and nextPtr, which are used for the linked list. One can retrieve forward or
backward trajectories by following the pointers of the linked list from a page pointed to by an
entry of theMO-Cube, i.e., hid; ptri to the next or previous pages. TheMO-Trace is a pool of
pages that are connected by a doubly linked list for the trajectory of moving objects. Also, the
MO-Trace may be used in combination with R-tree based methods if entries of R-tree base
methods are slightly modified to contain the pointer to a page of theMO-Trace.
Although theMO-Trace does not explicitly store dynamic information such as the average or

maximum speed and heading, it can be computed by extracting a sequence of positions between
two specified timestamps.
5. Algorithms for loading and querying

5.1. Inserting moving objects to AIM

In this section, we describe how to insert MðidÞ into the AIM. The simplest approach to
represent the trajectories of moving objects would be to store each sampled position into the
corresponding bucket. To answer queries about trajectories at times in-between those of the
sampled positions, we treat the sampled positions as the endpoints of line segments of polylines in
a 3D space. We will use the following example in Fig. 6 to describe how to insert a line segment
into the AIM.
For the sake of simplicity of our example, we assume that a page in the MO-Trace can ac-

commodate 3 entries and eachMO-Slice is partitioned to 4 cells. The initial situation of insertion
procedure is given in Fig. 6(a). At timestamp t0, A0 and B0, the current positions of MðAÞ, MðBÞ,
are inserted into the current page of theMO-Trace. Then, the pointer to the current page of the
MO-Trace and an id are written to the corresponding bucket of theMO-Cube. For example in
Fig. 6(a), A0 belongs to cell 1 and is inserted into the page p0 of theMO-Trace. Thus, an entry
hA; p0i is inserted into the bucket 1 of theMO-Cube at t0. We call this procedure PointInsertion.
At the next sampling time t1, new positions are inserted into theMO-Trace and theMO-Cube

in the same way as described above. In addition, since the two points such as hA0; t0i and hA1; t1i
constitute a line segment, the information of the line segment should also be inserted into the
corresponding bucket at timestamp t0. By tracking the line segment in all the cells they pass
through, we can answer time-slice/interval queries even at a time point/interval between two
sampled positions by interpolating them.

Fig. 6. Insertion.

88 W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101
Each entry in bold-face fonts such as hA; p0i in a bucket ofMO-Slice at t0 in Fig. 6(b) indicates
that a line segment one of whose end points is hA; p0i has been added. Specifically, since a line
segment with end points hA0; t0i and hA1; t1i intersects cells 1, 3 and 4 during a time period ½t0; t1Þ,
each of the buckets 1, 3 and 4 of the MO-Cube at t0 contains the page pointer p0 of the MO-
Trace. We call this second procedure LineInsertion.
After the LineInsertion procedure, the buckets at t1 are now ready to be appended to the Bucket

Set of the MO-Cube. This means that the overlapping technique can now be adopted to these
buckets. When the buckets are written to the Bucket Set, a bucket identical to one of the previous
buckets in the Bucket Set is not actually written to disk. Instead, it shares the content with the
previous bucket. The gray buckets of the MO-Cube in Fig. 6(c) and (d) show the overlapped
buckets. We call this procedure Overlapping.
In summary, the insertion procedure of the AIM consists of three stages. In the first stage, the

PointInsertion procedure which simply inserts a point into the corresponding bucket is performed.
Next, the LineInsertion procedure appends the information of the line segment to the previous
buckets. After the LineInsertion procedure, the Overlapping procedure writes the buckets to the
Bucket Set of the MO-Cube. During this procedure, the buckets which are identical with the
previous buckets are not actually written to a disk, but share the previous bucket in the Bucket
Set. The dotted line boxes of theMO-Cube in Fig. 6(c) and (d) mean the buckets that are already
moved to the Bucket Set in this way.
To handle these three procedures efficiently, each bucket has two temporary pages called col-

lector page. The solid line boxes of theMO-Cube in Fig. 6 show the collector pages of the cor-
responding bucket. The first collector page contains entries at now and the second collector page

W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101 89
contains entries at now) 1. After the collector page at now) 1 is written to the Bucket Set at
now) 2, the collector page is reused for the collector page at now.
Putting it together, we get the insertion procedure of the AIM shown in Algorithm 1. Note

that theRefineCell and the Overlapping procedure are invoked by the PointInsertion procedure. If
the position whose timestamp is larger than the bucket�s lifespan is arrived, a newMO-Slice is
created and the Overlapping procedure is invoked (line 8). Otherwise, the position whose time-
stamp is covered by the lifespan of the bucket is written to the corresponding buckets. At this time
if the bucket is full, the RefineCell procedure is invoked (line 9).

Algorithm 1. Insertion Algorithm for the AIM
Procedure Insertion (id; x; y; t)
begin

1: invoke PointInsertion(id; x; y; t);
2: invoke LineInsertion(id; x; y; t; x	1; y	1; t	1);

end
Procedure PointInsertion(id; x; y; t)
begin

3: PagePtr GetPagePointer(id); // Get the current page from theMO-Trace.
4: WritePosition(PagePtr; x; y; t); // Write the position to theMO-Trace.
5: c FindBucket(x; y; t); // Find the bucket which a position belongs to.
6: if Bucket[c] has not two collector pages then

Allocate two collector pages Collector[c][0] and Collector[c][1] to Bucket[c].
let NowPage[c] Collector[c][0].
let PrevPage[c] Collector[c][1].

7: if NowPage[c].tend < t // if the lifespan of bucket is over, the bucket is now overlapped. then
8: Invoke Overlapping(c);

else
9: if NowPage[c] is full then invoke RefineCell(NowPage[c]).
10: WritePagePtr(PagePtr, NowPage[c]); // Append the PagePtr to NowPage[c].

end
end
Procedure LineInsertion(id; x; y; t; x	1; y	1; t	1)
begin

11: PagePtr GetPagePointer(id);
12: BucketSet{c} Intersect(x; y; t; x	1; y	1; t	1);
13: for each c2BucketSet{c} do
14: if NowPage[c] is full then invoke RefineCell(PrevPage[c]). // Refine a cell adaptively.
15: WritePagePtr(PagePtr, PrevPage[c]);

end
end
Procedure Overlapping(c)
begin

16: if the PrevPage[c] equals to the previous bucket in theMO-Cube then
17: Reuse the previous bucket.

90 W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101
else
18: Append the PrevPage[c] to the Bucket Set.

end
19: let NowPage[c] Collector[c][1]. // Swap NowPage with PrevPage.

let PrevPage[c] Collector[c][0].
20: Clear NowPage[c]. // for reuse.

end
Procedure RefineCell(Page)
begin

21: Page.level++;
22: Partition the Page to 2Page:level sub_Pages.
23: for each c2Page do

Reinsert c into sub_Page.
end

end
5.2. Query processing

5.2.1. Time-slice and time-interval queries
One of the fundamental objectives of the AIM is to efficiently handle time-slice and time-in-

terval queries. The cell-based structure of theMO-Cube makes the query processing for time-slice
and time-interval queries intuitive and straightforward. Time-slice and time-interval query pro-
cessing involve selecting a set of entries of corresponding to the timestamp interval in question.
TheMO-Cube uses the address function Gðx; yÞ in Eq. (6) below to find a grid cell which a moving
object moves in. The address function G returns a pointer to an entry in the Time Array corre-
sponding to a grid cell that contains ðx; yÞ. The function G is defined as
Gðx; yÞ ¼ x
w

j k
ð
ffiffiffiffi
C
p
	 1Þ þ y

w

j k
; ð6Þ
where w is the width of a cell, and C is the total number of cells (see Fig. 2).
Suppose the timestamp interval of interest is from ts to te. A search operation is performed by

reading the correspondingMO-Slice from ts to te. Then, a set of the buckets intersected with a
query window R is obtained. Specifically, in line 4 of Algorithm 2, the CandidateSet is generated as
a set of hid; PagePtri. Note that since an entry hid; PagePtri is most likely to be inserted into
multiple buckets, we must eliminate the duplicated entries in order to have only one copy of an
entry. The next job is to check if line segments in PagePtr are actually intersected with R (in line 6
of Algorithm 2). We call this procedure an intersection test. This algorithm can support both time-
slice query and time-interval query.
As an example, consider a query which is looking for all moving objects in some region over-

lapping the query window qs of Fig. 7 during time interval ½t1; t2
. Search starts by reading the Time
Array of theMO-Slice. Since cell 2 and 4 intersect qs, the CandidateSet is fhA; p0i; hB; p1i; hB; p3ig
after reading the bucket 2 and 4 during ½t1; t2
, which are shown as gray boxes of theMO-Cube in
Fig. 7. In order to complete the result, the intersection test checks whether the line segment in

Fig. 7. Example of Query Processing.

W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101 91
PagePtr actually intersects qs. Since the line segment in p0 intersects qs, hA; p0i is included in the
AnswerSet. In the same way, hB; p1i is also included in theAnswerSet. But, hB; p3i is excluded since
B is already included in the AnswerSet. Therefore, the final result is fhA; p0i; hB; p1ig.

Algorithm 2. Time-slice/interval Query Algorithm
Procedure Time-IntervalQuery (ts; te;R)
// Given a query window R and a time interval,

// Find all moving objects within R at any time

// between ts and te ðts < te 6 tnowÞ
begin

1: set CandidateSet an empty set;
2: set AnswerSet an empty set;
3: for eachMO-Slice between [ts; te] do
4: CandidateSet{c} Intersect(R); //Get id and PagePtr intersected with R.

end
5: for each id 2CandidateSet[c] // intersection test do
6: if id 62AnswerSet and any line segments in PagePtr intersect R then
7: AnswerSet hid; PagePtri [AnswerSet;

end
end

end
5.2.2. Trajectory retrieval
The retrieval of trajectories is shown in Algorithm 3. After we get the moving object ID and

StartPage from the MO-Cube, we can easily retrieve the corresponding trajectories from the
MO-Trace as shown in Algorithm 3. First, we read the doubly linked list of id backward in order
to get the trajectories from ts to the latest timestamp in StartPage (Algorithm 3––line 2–4). Then,
we read pages forward in order to get the trajectories from the latest timestamp in StartPage to te
(Algorithm 3––line 6–8).

92 W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101
As an example, consider Fig. 7 in the previous section. Since the AnswerSet is obtained after
time-interval query, the trajectories can be retrieved by reading the page which StartPage points
out, i.e., p0 and p1. As a result, the trajectories of A and B will be fhA1; t1i; hA2; t2ig and fhB1; t1i;
hB2; t2ig, respectively.

5.3. Purge operation

Purge operation to handle �obsolete� entries is very important in spatio-temporal access meth-
ods, because maintaining all versions of each timestamp may be too costly in terms of space
requirements. In order to reduce space requirements, index pages contains �obsolete� entries can be
purged. The purge operation of R-tree based methods removes pages consisting of �obsolete� en-
tries from the tree structure. This purge operation actually leads to unbalanced trees because
several nodes are removed without affecting the rest of nodes and pointers. Becker et al. addressed
this problem in [3]. However, the purge operation of the AIM is very simple and intuitive. The
AIM removes theMO-Slices and the part of doubly linked lists of theMO-Trace corresponding
to �obsolete� timestamps to a secondary or tertiary storage. The restoration of �obsolete� theMO-
Slices and the doubly linked lists is simple as well.

Algorithm 3. Retrieval of trajectory
Procedure TrajectoryRetrieval (id; StartPage; ts; te)
// Given a moving object ID and a StartPage which retrieval starts from,

// Retrieve the trajectory of a moving object ID

// at any time between ts and te ðts < te 6 tnowÞ
begin

1: set Page StartPage;
while Page is not NULL do

2: Read line segments from Page.
3: if Page contains line segment at ts then break
4: Page Page.PrevPtr;

end
5: set Page StartPage;

while Page is not NULL do
6: Read line segments from Page.
7: if Page contains line segment at te then break;
8: Page Page.NextPtr;

end
end
6. Performance evaluations

In this section, we evaluate the AIM empirically and compare with the previous work through
extensive experimentation. The data set we used are described, and the results of experiments are
given next.

W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101 93
6.1. Data sets

We generated synthetic data sets using the GSTD spatio-temporal data generator [25]
following a scenario where cars move in a square region of 100 square kilometers. Each car is
equipped with a GPS device, and transmits its position to the server at each timestamp using
either radio communication links, or cellular phones. Cars are initially located around the
left-bottom corner of the space, and are moving toward the center, and then gather around
the right-upper corner. Such movement will change the distribution of cars from the initial
skewed one to uniform and then skewed again. Cars are assigned a certain velocity with an
equal probability, which is defined as the average distance to a specific direction that a car
can move between two consecutive timestamps. We also assume that not all cars are active
at each timestamp, that is, only a fraction (a percent) of cars change their positions between
two consecutive timestamps. The a is called the activity of a set of cars or any moving
objects.
For each data set, a set of data objects were created following the Zipf distribution within a unit

square for the first timestamp. Then, at each of the subsequent timestamps, we randomly selected
an a percent of the data objects and made them active with a certain velocity. The direction and
velocity of an object can be controlled by properly adjusting the distributions of center coordi-
nates.
There are three important parameters that affect the performance: (i) the distribution of

data set, (ii) the activity of data set, and (iii) the average velocity of objects. We carried out
experiments with a wide range of values for these parameters as follows. A Zipf parameter
that controls the skewedness of data distribution was varied from 0 to 2. This parameter is
the exponent z in a power-law function Pi 1

iz. Note that the z value 0 means that the data
set is uniformly distributed. The activity a was varied from 0 to 100. Notice that a ¼ 0 implies
that no objects change its position between timestamps, whereas a ¼ 100 means that all
objects change its position between timestamps. The average velocity of objects v was in
ranges [0.0001, 0.32]. We selected the adjustment approach among three approaches
provided by the GSTD to handle invalid objects fallen outside the work space. With these para-
meter settings, we generated various data sets with 10K objects each, evolving for 512 time-
stamps.

6.2. Settings for experiments

Experiments were performed on a Sun Ultra SPARC-IIi 333 MHz workstation running on
Solaris 2.7. This workstation has 512MB of memory and 9.1GB of disk storage (IBM 18ES) with
Ultra2 SCSI interface. We used the direct I/O feature of Solaris for all the experiments to avoid
operating system�s cache effects. Throughout the entire set of experiments, the same page size of
1KB was used for disk I/O. Using this page size, the fanouts of the HR-tree and the 3D R-tree
were 42 and 36, respectively. For the MV3R-tree, the fanout was 36, Pversion and Psvo were set to
0.35 and 0.85, respectively. The fanout of the STR-tree was 28 and 36 for leaf and non-leaf nodes,
and the fanout of the TB-tree was 31 and 36 for leaf and non-leaf nodes. The number of entries
per page (E) of theMO-Cube was 128. We divided the data space into 64 cells using Eq. (4) given
in Section 4.1.1.

94 W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101
6.3. Time-slice/interval queries

In the first set of experiments, we compared the AIM with R-tree based methods for pro-
cessing time-slice/interval queries. As already mentioned, we used data sets with cardinality 10K
evolving for 512 timestamps. We generated square query windows whose side lengths are 10% or
20% of the unit [0,1). That is, the selectivity of each query was either one or four percent of the
universe. The query windows were distributed uniformly in the universe [0,1)2. In order to sim-
ulate real life situations, we executed workloads with 1000 queries for each sets of experiments.
Cost was measured in terms of the average number of page accesses per query. In addition to that,
actual query response times were measured.
Fig. 8(a) and (b) shows the average number of page accesses as a function of the interval when

the spatial query selectivity was 1% and 4%, respectively. The length of temporal query intervals
was varied between 0% and 20%. An interval of 0% corresponds to a single timestamp (i.e. a time-
slice query), and an interval of 20% corresponds to approximately 100 timestamps. The notation
used in this section is summarized in Table 2.
The AIM outperformed R-tree based methods except the extreme case of an interval of 0%.

Regarding time-slice queries, the performance of the AIM was slightly worse than that of the
HR-tree and the MV3R-tree, since the query process of the AIM included the intersection test
(testing whether a line segment satisfies the query range), which needs to access theMO-Trace per
candidate obtained after range searches. However, for time-interval query (i.e., longer than 0%),
The AIM consistently outperformed R-tree based structures. Fig. 8(c) shows the average elapsed
time spent processing a time-slice/interval query. As Fig. 8(c) shows, the AIM outperformed R-
tree based methods by a factor of two to three in average response time.
It is noteworthy that the six index structures were divided into two groups at an interval of 0%

in Fig. 8(a)–(d) according to their performance behaviors. The 3D R-tree, the TB-tree and the
STR-tree in the first group showed much higher processing cost for time-slice queries than the
other group of index structures. This is due mainly to the fact that those in the first group are
ephemeral index structures, whereas those in the second group (the AIM, the HR-tree and the
MV3R-tree) are multiple-index structures.
For an interval value below 10%, the MV3R-tree showed superior time-interval query per-

formance over the 3D R-tree as shown in Fig. 8(b). For a longer, above 10%, this trend was
reversed. However, as Fig. 8(c) shows, the MV3R-tree was slightly better than the 3D R-tree in
average response time.
It is also important to notice that both the STR-tree and the TB-tree were worse than the 3D R-

tree for interval values below 15% as shown in Fig. 8(a), since the TB-tree (The STR-tree) does not
consider the spatial discrimination of the data sets at all (partially). However, for time-interval
queries (longer than 15%), the TB-tree supports time-interval queries much more efficiently than
the 3D R-tree does, since the TB-tree does ‘‘know’’ about the temporal discrimination of the data.
On the other hand, in the case of the spatial query selectivity of 4%, the 3D R-tree show superior
time-slice/interval query performance consistently over both the STR-tree and the TB-tree as
shown in Fig. 8(b), since the spatial discrimination capabilities of the index became more im-
portant as the size of a query window increased.
In addition, we also executed extensive experiments to study how the behavior of the AIM

and R-tree based methods vary according to activity, skewedness and velocity as shown in

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0% 5% 10% 15% 20%

A
vg

. N
um

 o
f P

ag
e

A
cc

es
se

s

interval

AIM
TB

STR
3DR

MV3R
HR

0

2000

4000

6000

8000

10000

12000

14000

0% 5% 10% 15% 20%

A
vg

. N
um

. o
f P

ag
e

A
cc

es
se

s

interval

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0% 5% 10% 15% 20%

A
vg

. R
es

po
ns

e
T

im
e

pe
r

Q
ue

ry
(m

s)

interval

AIM
TB

STR
3DR

MV3R
HR

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100

A
vg

. N
um

. o
f P

ag
e

A
cc

es
se

s

activity

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.5 1 1.5 2

A
vg

. N
um

. o
f P

ag
e

A
cc

es
se

s

skewedness

AIM
TB

STR
3DR

MV3R
HR

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.001 0.002 0.005 0.01 0.02 0.04 0.08 0.16 0.32

A
vg

. N
um

 o
f P

ag
e

A
cc

es
se

s

velocity

a: activity, v: velocity, z: skewedness, q: spatial selectivity, I: temporal interval

(a) (b)

(d)

(f)(e)

(c)

Fig. 8. Time-slice/interval queries (a) a ¼ 30, v ¼ 0:005, z ¼ 1, q ¼ 1% (b) a ¼ 30, v ¼ 0:005, z ¼ 1, q ¼ 4% (c) a ¼ 30,
v ¼ 0:005, z ¼ 1, q ¼ 1% (d) z ¼ 1, v ¼ 0:005, q ¼ 1%, I ¼ 10% (e) a ¼ 30, v ¼ 0:005, q ¼ 1%, I ¼ 10% (f) a ¼ 30, z ¼ 1,
q ¼ 1%, I ¼ 10%.

W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101 95
Fig. 8(d)–(f). First, Fig. 8(d) shows the effect of activity. The HR-tree was the most sensitive to the
activity as shown in Fig. 8(d). The reason is that the reuse rate decreased rapidly as the activity
increased. Meanwhile, the AIM was nearly unaffected by activity values, thus showed the best
performance without regard to activity values.

Table 2

Notation for data sets and queries

Notation Description Values

a Activity [0, 100]

v Velocity [0.001, 0.32]

z Skewedness [0, 2]

q Spatial query selectivity [1%, 4%]

I Temporal query interval [0%, 20%]

96 W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101
All the index structures were slightly affected by the skewedness as shown in Fig. 8(e). Whereas
the velocity showed non-trivial impact on query processing performance as shown in Fig. 8(f). In
particular, it is important to notice that a multiversion and overlapping structure, i.e., the MV3R-
tree, the HR-tree and the AIM, were more sensitive to the velocity than the others.

6.4. Trajectory queries

For trajectory queries, we compared the AIM with the STR-tree and the TB-tree which are
trajectory oriented originally. The 3D R-tree was also included in order to compare with the STR-
tree and the TB-tree. Fig. 9 illustrates the performance of trajectory queries as a function of tra-
jectory length. We used data sets with a ¼ 30, v ¼ 0:005 and z ¼ 1. As for the queries, we use three
sets of the side length of cubic querywindowwith 1%, 10% and 20%of the total rangewith respect to
each dimension (i.e., x, y and t) and the length of trajectory needed to be retrieved after range search
is in a range from 1% to 50%.Note that the trajectory length of 50% corresponds to 256 timestamps.
For trajectory queries, the AIM also consistently outperformed R-tree based methods. The

performance measurements of the AIM were almost clung to the x axis. Although the TB-tree
showed better performance than the 3D R-tree as shown in Fig. 9(a), its performance was worse
than that of 3D-tree for trajectories of relatively short length as shown in Fig. 9(b) and (c). This is
because the spatial discrimination becomes important in the case of short length trajectories.
Thus, the 3D R-tree, which has much more space discrimination capabilities than the TB-tree,
showed better performance than the TB-tree.
The performance of both the STR-tree and the 3D R-tree deteriorated rapidly as the length of

trajectories increased. This fact shows that these methods have weak temporal discrimination
capabilities. On the other hand, the curves of the AIM and the TB-tree were nearly parallel to x
axis. This is because these methods strictly preserve trajectories by keeping line segments be-
longing to the same trajectory together.
Although the TB-tree processed trajectory queries much more efficiently than the 3D R-tree

and the STR-tree in all but few exceptional cases, it was still consistently outperformed by the
AIM as shown in Fig. 9(a)–(d).

6.5. Storage savings by reuse

In this subsection, we analyzed the reuse rates of the AIM, the MV3R-tree and the HR-tree
which adopt an overlapping technique or amultiversion structure. Fig. 10(a) shows the reuse rates of
the AIM, the MV3R-tree and the HR-tree. As expected, the reuse rates of the MV3R-tree and the

0

500

1000

1500

2000

2500

3000

1% 10% 20% 30% 40% 50%

A
vg

. N
um

 O
f P

ag
e

A
cc

es
se

s

Trajectory Length

AIM
TB

STR
3DR

0

2000

4000

6000

8000

10000

12000

10% 20% 30% 40% 50% 60%

A
vg

. N
um

 O
f P

ag
e

A
cc

es
se

s

Trajectory Length

AIM
TB

STR
3DR

0

5000

10000

15000

20000

25000

30000

35000

40000

20% 30% 40% 50% 60% 70%

A
vg

. N
um

 O
f P

ag
e

A
cc

es
se

s

Trajectory Length

AIM
TB

STR
3DR

0

500

1000

1500

2000

2500

3000

3500

4000

10% 20% 30% 40% 50% 60%

A
vg

. R
es

po
ns

e
T

im
e

pe
r

Q
ue

ry
(m

s)

Trajectory Length

AIM
TB

STR
3DR

(a) (b)

(c) (d)

Fig. 9. Trajectory queries: (a) 1% in each dimension ðx; y; tÞ, (b) 10% in each dimension ðx; y; tÞ, (c) 20% in each di-

mension ðx; y; tÞ, (d) response time, 10% in each dimension.

W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101 97
HR-tree were much lower than that of the AIM. Fig. 10(b) shows the reuse rates as a function of
the activity. The reuse rates of the MV3R and the HR-tree decreased rapidly as the activity in-
creased. This shows that the benefit from the reuse technique may not come up to our expectations,
when more than 10% of the objects change their position at each timestamp. Fig. 10(c) illustrates the
reuse rates as a function of the skewedness. Although the reuse rates slightly decreased as the
skewedness increased, the reuse rate was less sensitive to the skewedness than the other factors.
To further analyze the reuse rate of the AIM, we measured the reuse rate with varying ve-

locities under different data distributions. Fig. 10(d) shows the reuse rates of the AIM. In this
experiment, the dominant factor for the reuse rate was the size of a cell. Specifically, if the width of
a cell is smaller than the maximum distance an object can travel between two consecutive time-
stamps, it is highly probable that a new bucket is created. In case of a skewed data distribution,
the average size of cells where more objects can be located tends to be smaller, due to more
frequent refinements. This explains the fact that the reuse rate for the uniform distribution was
higher than that for the skewed distribution, when the velocity was high.

6.6. Cost to build an index

Fig. 11(a) shows the size of various methods. As expected, the AIM had the smallest size. The
size of the AIM was significantly smaller than that of R-tree based methods.

0

20

40

60

80

100

0.001 0.002 0.005 0.01 0.02 0.04 0.08 0.16 0.32

R
eu

se
 R

at
e

%

velocity

AIM
MV3R

HR

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

R
eu

se
 R

at
e

%

activity

AIM
MVR

HR

0

20

40

60

80

100

0 0.5 1 1.5 2

R
eu

se
 R

at
e

%

skewedness

AIM
MV3R

HR

0

20

40

60

80

100

0.001 0.002 0.005 0.01 0.02 0.04 0.08 0.16 0.32

R
eu

se
 R

at
e

%

velocity

uniform
skew 1.0
skew 2.0

(a) (b)

(d)(c)

Fig. 10. Reuse rates: (a) a ¼ 30, z ¼ 1; (b) v ¼ 0:005, z ¼ 1; (c) a ¼ 30, v ¼ 0:005; (d) reuse rate of the AIM.

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

S
iz

e(
M

B
)

activity

AIM
TB

STR
3DR

MV3R
HR

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100

A
vg

. T
im

e
pe

r
T

im
es

ta
m

p(
se

c)

activity(b)(a)

Fig. 11. Size and building time comparisons: (a) index size, (b) building time.

98 W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101
The size of the HR-tree increased rapidly when the activity was in range 0% from to 10%, which
explains that the reuse rate was reduced rapidly. Although the size of the HR-tree was signifi-
cantly larger than that of the other methods for less active data sets, it was smaller than those of
the MV3R-tree and the 3D R-tree for highly active data sets. The sizes of the STR-tree and the
TB-tree were smaller than that of the 3D R-tree since the average space utilizations of the SR-tree

W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101 99
and the TB-tree is almost 100%. Notice that the size of the TB-tree at a ¼ 0 was about 11MB,
because a leaf node only contained segments belonging to the same trajectory, resulting in 10K
leaf nodes.
Next, we compared the AIM and R-tree based methods in terms of the wall clock time spent

on building the indexes. Fig. 11(b) shows the average time spent to build an index per timestamp
measured with varying activities. The building time of the AIM was significantly lower than
those of R-tree based methods by about an order of magnitude. The HR-tree was the second best,
despite the size was larger than that of the other methods. This is because that it is faster to build a
new index for 10K objects than to insert them into an existing index with many objects. The
building time of the MV3R-tree was slightly larger than that of the other methods. This is due to
the time needed to manage the combination of the MVR-tree and the 3D R-tree and the cost of
the re-insertion function.
In summary, the AIM not only has the smallest index size, but also requires the least time to

build. This results demonstrate that the AIM is much better suited for mission-critical applica-
tions with high time and space complexities.
7. Conclusions and future work

This is the first study that adopts a cell-based index structure for the current and historical
information of moving objects, instead of hierarchical access methods such as R-trees. We have
proposed an adaptive cell-based approach, called AIM, which consists of two main structures:
MO-Cube andMO-Trace. TheMO-Cube utilizes an overlapping technique to reduce the storage
requirements, and refines cells adaptively to handle data skew problems with only very small space
overhead. TheMO-Trace strictly preserves the entire trajectories of moving objects in a space-
efficient way.
Through the extensive experiments, the AIM has proven to be an effective access method well

suited for moving objects. The AIM achieved reductions in storage requirement up to an order of
magnitude more than those by R-tree based approaches. In addition, the AIM outperformed R-
tree based approaches consistently and considerably for both time-slice/interval queries and
trajectory queries.
The AIM can be augmented with the capability of predicting the future locations of moving

objects. We plan to work toward the direction and also plan to develop algorithms for k-nearest
neighbor searches with theMO-Cube. Finally, we also expect the AIM to be applied to spatio-
temporal data warehouses for moving objects.
Acknowledgements

This work was supported in part by the Brain Korea 21 Project and the Information Tech-
nology Research Center (ITRC) Support Program from the Government of Korea. It was also
sponsored in part by National Science Foundation CAREER Award (IIS-9876037), Grant No.
IIS-0100436, and Research Infrastructure program EIA-0080123. The authors assume all re-
sponsibility for the contents of the paper.

100 W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101
References

[1] Tamas Abraham, John F. Roddick, Survey of spatio-temporal databases, GeoInformatica 3 (1) (1999) 61–99.

[2] Pankaj K. Agarwal, Lars Arge, Jeff Erickson, Indexing moving points, in: Proceedings of the 19th ACM

Symposium on Principles of Database Systems, Dallas, TX, May 2000, pp. 175–186.

[3] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, Peter Widmayer, An asymptotically optimal

multiversion B-tree, VLDB Journal 5 (4) (1996) 264–275.

[4] Jon Louis Bentley, Donald F. Stanat, E. Hollings Williams Jr., The complexity of finding fixed-radius near

neighbors, Information Processing Letters 6 (6) (1977) 209–212.

[5] F. Warren Burton, Matthew M. Huntbach, John G. Kollias, Multiple generation text files using overlapping tree

structures, The Computer Journal 28 (4) (1985) 414–416.

[6] F. Warren Burton, John G. Kollias, D.G. Matsakis, V.G. Kollias, Implementation of overlapping B-trees for time

and space efficient representation of collection of similar files, The Computer Journal 33 (3) (1990) 279–280.

[7] Hae Don Chon, Divyakant Agrawal, Amr El Abbadi, Using space–time grid for efficient management of moving

objects, in: ACM International Workshop on Data Engineering for Wireless and Mobile Access, 2001.

[8] Luca Forlizzi, Ralf Hartmut G€uuting, Enrico Nardelli, Markus Schneider, A data model and data structures for

moving objects databases, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management

of Data, 2000, pp. 319–330.

[9] Volker Gaede, Oliver G€uunther, Multidimensional access methods, ACM Computing Surveys 30 (2) (1998) 170–

231.

[10] Antonin Guttman, R-trees: a dynamic index structure for spatial searching, in: Proceedings of the 1984 ACM

SIGMOD International Conference on Management of Data, Boston, MA, June 1984, pp. 47–57.

[11] George Kollios, Dimitrios Gunopulos, Vassilis J. Tsotras, On indexing mobile objects, in: Proceedings of the 18th

ACM Symposium on Principles of Database Systems, Philadelphia, PA, May 1999, pp. 261–272.

[12] Dongseop Kwon, Sangjun Lee, Sukho Lee, Indexing the current positions of moving objects using the Lazy update

R-tree, in: Proceedings of the 3rd International Conference on Mobile Data Management, Singapore, January

2002, pp. 113–120.

[13] David B. Lomet, Betty Salzberg, Transaction-time databases, in: Temporal Databases, 1993, pp. 388–417.

[14] Yannis Manolopoulos, G. Kapetanakis, Overlapping Bþ-tree for temporal data, in: Proceedings 5th Jerusalem
Conference on Information Technology, Jerusalem, Israel, 1990, pp. 491–498.

[15] Mario A. Nascimento, Jefferson R.O. Silva, Towards historical R-trees, in: Proceedings of the 1998 ACM

Symposium on Applied Computing, Atlanta, GA, February 1998, pp. 235–240.

[16] J. Nievergelt, H. Hinterberger, K.C. Sevcik, The grid file: an adaptable, symmetric multi-key file structure, ACM

Transactions on Database Systems 9 (1) (1984) 38–71.

[17] Dieter Pfoser, Christian S. Jensen, Yannis Theodoridis, Novel approaches in query processing for moving object

trajectories, in: Proceedings of 26th International Confernce on Very Large Data Bases, Cairo, Egypt, September

2000, pp. 395–406.

[18] Simonas Saltenis, Christian S. Jensen, Scott T. Leutenegger, Mario A. Lopez, Indexing the positions of

continuously moving objects, in: Proceedings of the 2000 ACM SIGMOD International Conference on

Management of Data, Dallas, TX, May 2000, pp. 331–342.

[19] Hanan Samet, The quadtree and related hierarchical data structures, ACM Computing Surveys 16 (2) (1984) 187–

260.

[20] A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, Son Dao, Modeling and querying moving objects, in:

Proceedings of the Thirteenth International Conference on Data Engineering, Birmingham, UK, April 1997,

pp. 422–432.

[21] Zhexuan Song, Nick Roussopoulos, Hashing Moving Objects, In Proceedings of the 2nd International Conference

on Mobile Data Management, pages 161–172, Hong Kong, China, January 2001.

[22] Yufei Tao, Dimitris Papadias, MV3R-tree: a spatio-temporal access method for timestamp and interval queries, in:

Proceedings of 27th International Conference on Very Large Data Bases, Roma, Italy, September 2001.

[23] Jamel Tayeb, €OOzg€uur Ulusoy, Ouri Wolfson, A quadtree-based dynamic attribute indexing method, The Computer

Journal 41 (3) (1998) 185–200.

W. Choi et al. / Data & Knowledge Engineering 48 (2004) 75–101 101
[24] Yannis Theodoridis, Timos K. Sellis, Apostolos Papadopoulos, Yannis Manolopoulos, Specifications for efficient

indexing in spatiotemporal databases, in: 10th International Conference on Scientific and Statistical Database

Management, Capri, Italy, July 1998, pp. 123–132.

[25] Yannis Theodoridis, Jefferson R.O. Silva, Mario A. Nascimento, On the generation of spatiotemporal datasets, in:

Proceedings of the 6th International Symposium on Spatial Databases, 1999, pp. 147–164.

[26] Yannis Theodoridis, Michalis Vazirgiannis, Timos K. Sellis, Spatio-temporal indexing for large multimedia

applications, in: Proceedings of the 3rd IEEE Conference on Multimedia Computing and Systems, Hiroshima,

Japan, 1996, pp. 441–448.

[27] Theodoros Tzouramanis, Michael Vassilakopoulos, Yannis Manolopoulos, Overlapping linear quadtrees: a spatio-

temporal access method, in: Proceedings of the 6th ACM International Workshop on Geographical Information-

Systems, Washington, DC, November 1998, pp. 1–7.

[28] Ouri Wolfson, Bo Xu, Sam Chamberlaina, Liqin Jiang, Moving objects databases: issues and solutions, in:

Proceedings of 10th International Conference on Scientific and Statistical Database Management, 1998, pp. 111–

122.

[29] X. Xu, J. Han, W. Lu, RT-tree: an improved R-tree index structure for spatiotemporal databases, in: Proceedings

of the 4th Intl. Symposium on Spatial Data Handling, SDH�90, Zurich, Switzerland, 1990, pp. 1040–1049.

Wonik Choi is a Ph.D. student in the School of Electrical Engineering and Computer Science, Seoul National
University, Seoul, Korea. His current research interests include spatio-temporal databases, mobile databases,
geographic information systems, XML. He received his MS and BS degrees in the Department of Computer
Engineering from Seoul National University, Seoul, Korea, in 1998 and 1996, respectively.
Bongki Moon is an Associate Professor of Computer Science at the University of Arizona. His current
research interests include high performance spatial and temporal databases, scalable web servers, data mining
and warehousing, and parallel and distributed processing. He received his Ph.D. degree in Computer Science
from University of Maryland, College Park, in 1996, and his MS and BS degrees in Computer Engineering
from Seoul National University, Korea, in 1985 and 1983, respectively. He was a member of the research staff
at Communication Systems Division, Samsung Electronics Corp., Korea, from 1985 to 1990. He received the
National Science Foundation CAREER Award in 1999.
Sukho Lee received his BA degree in Political Science and Diplomacy from Yonsei University, Seoul, Korea,
in 1964 and his MS and Ph.D. in Computer Sciences from the University of Texas at Austin in 1975 and 1979,
respectively. He is currently a professor of the School of Computer Science and Engineering, Seoul National
University, Seoul, Korea, where he has been leading the Database Research Laboratory. He has served as the
president of Korea Information Science Society. His current research interests include database management
systems, spatial database systems, and multimedia database systems.

	Adaptive cell-based index for moving objects
	Introduction
	Related work
	Indexing past and now
	Indexing now and future

	Design of the AIM
	Design principles
	An application scenario

	The structure of the AIM
	MO-Cube
	MO-Cube as a pile of slices
	Adaptive cell refinement
	Overlapping the MO-Slices
	Discussion

	MO-Trace

	Algorithms for loading and querying
	Inserting moving objects to AIM
	Query processing
	Time-slice and time-interval queries
	Trajectory retrieval

	Purge operation

	Performance evaluations
	Data sets
	Settings for experiments
	Time-slice/interval queries
	Trajectory queries
	Storage savings by reuse
	Cost to build an index

	Conclusions and future work
	Acknowledgements
	References

