
Partition Based Path Join Algorithms for XML Data ?

Quanzhong Li and Bongki Moon

Department of Computer Science, University of Arizona, Tucson, AZ 85721.
flqz,bkmoon g@cs.arizona.edu

Abstract. Path expression is an important component in querying XML data.
The extended preorder numbering scheme enables us to quickly determine the
ancestor-descendant relationship between elements in the hierarchy of XML data.
Using the numbering scheme, a path expression can be evaluated by join opera-
tions to avoid potentially high cost of tree traversals. In this paper, we first formu-
late XML path queries as range-point join queries. Then we discuss the partition
based algorithms that can utilize therange containment propertyto efficiently
process the range-point join queries. Under the partition based framework, we
propose three algorithms, namelyDescendant partition join, Segment-tree parti-
tion join andAncestor Link partition join, which can be chosen by a query opti-
mizer for different input data characteristics. The experimental results show that
the partition based algorithms can make better use of the buffer memory than sort-
merge algorithms, and the proposedAncestor Link joinalgorithm yields the best
performance by using small in-memory data structures and by taking advantage
of unevenly sized inputs.

1 Introduction

With the popularity of XML as a new standard for information representation and ex-
change on the Internet, the problem of managing and querying XML data is becoming
more and more important. Various work has been done to efficiently evaluate queries
on XML data. In graph-based data models, a path expression is evaluated through tree
traversal according to the shape of the data [8, 3]. With the introduction of the num-
bering scheme on XML data [6], a path expression can be processed using join algo-
rithms [6, 13, 12].Path Joinalgorithms [6] (e.g.EE-Join andEA-Join) are sort-merge
based algorithms to process ancestor-descendant type expressions.Structural Joins[12]
(tree-merge and stack-tree algorithms) optimizes the join performance by introducing
in-memory stacks.

Sort-merge based algorithms assume the inputs are in sorted order of assigned num-
bers, but this order is not always guaranteed. For example, an input may be sorted by
data values, or it may be the result from operations using hash indexes. In this paper,
we discuss the use of partition based algorithms to process XML join queries. When
the descendant input is used as the outer set in the join, theDescendant Partition Join
algorithm can be used to process join operations. When the ancestor input is used as
the outer set, we propose theSegment-tree Partition Joinand theAncestor Link Parti-
tion Joinalgorithms. The experimental results show that the Ancestor Link algorithm

? This work was sponsored in part by the National Science Foundation CAREER Award (IIS-
9876037), NSF Grant No. IIS-0100436, and NSF Research Infrastructure program EIA-
0080123. The authors assume all responsibility for the contents of the paper.



A <1,8>

C <3,0>

B <2,1> A <4,2>

C <6,0>B <5,0>

A <7,2>

D <9,0>B <8,0>

1 2 3 4 5 6 7 8 9

A<1,8>

A<7, 2>A<4, 2>

B 2 B 8B 5

Extended Preorder Number Space

Ancestor
Range Set

Descendant
Point Set

(a) Numbering Scheme Example (b) Range-Point Sets Illustration

Fig. 1. Numbering Scheme and Range-Point Sets

can make the best use of memory buffer and take advantage of unevenly sized inputs.
We believe that these algorithms are necessary choices for query optimizers to consider
during XML query processing for different input characteristics.

The rest of the paper is organized as follows. In Section 2, we will introduce the
numbering scheme and three partition based join algorithms. Section 3 presents the
performance results. After the brief survey in Section 4, we conclude the work of this
paper in Section 5.

2 Partition Based Path Join Algorithms

Since the extended preorder numbering scheme is the basis for path join algorithms, we
will briefly introduce it next.

2.1 Extended Preorder Numbering Scheme

XML data objects are commonly modeled by a tree structure, where nodes represent
elements, attributes and text data, and parent-child node pairs represent nesting between
XML data components. TheExtended Preorder Numbering Schemecaptures this tree
structure and assigns each node a pair of numbers,<order; size>. Theorder is similar
to the preorder, and thesizeis the number of descendants. This pair of numbers should
satisfy the following conditions:

– For a tree nodey and its parentx, order(x) < order(y) andorder(y)+size(y) �
order(x) + size(x). In other words,y’s range [order(y), order(y) + size(y)] is
contained inx’s range [order(x), order(x) + size(x)].

– For two sibling nodesx andy, if x is the predecessor ofy in preorder traversal,
order(x) + size(x) < order(y). In other words,x’s andy’s ranges are disjoint.

For example, Figure 1(a) shows a tree labeled with these pairs of numbers. The ancestor-
descendant relationship can be determined in constant time by examining these num-
bers. That is, for two given nodesx andy of a treeT , x is an ancestor ofy if and only
if order(x) < order(y) � order(x) + size(x). To process path expressions, we can
gather two node sets, the ancestor set and the descendant set, and join them together
using the above condition.

According to the numbering scheme, we can treat the ancestor set as a range set
and the descendant set as a point set. In Figure 1(a), suppose we are going to find all
the paths of the pattern “A//B”, which is to get all the “B” descendants of “A”. We can
first gather the ancestor set, which isf< 1; 8 >;< 4; 2 >;< 7; 2 >g. Then, we obtain
the descendant point set, which isf2; 5; 8g. By the numbering scheme, the ancestor set
corresponds to the range set:f[1; 9]; [4; 6]; [7; 9]g. Now, the task to find “A//B” is the



same as to find the pairs of range and point, where the point is contained in the range.
Figure 1(b) illustrates this range set and point set relationship. After mapping ancestor
sets to range sets and mapping descendant sets to point sets, the problem of finding path
pattern is reduced to computing the join between a range set and a point set, which will
be referred asrange-point joinin this paper.

The ancestor range set is generated from a document tree using the numbering
scheme, where each range corresponds to a sub-tree in the document tree. Since there is
no partial overlap between any two sub-trees, there is no partial overlap among ranges.
We formalize this property asrange containment property, which is defined as follows:

Range Containment Property:For any two ranges in the range set, either one
range is contained in the other or they are disjoint.

It is this property that provides us the opportunity and basis to deal with this special
type of join operation. In the following section, we will describe how this property can
be exploited to make the join algorithms more efficient.

2.2 Partition Based Algorithms

Data Partitioning The first step in partition join is to partition both input data sets
that need to be joined. Each pair of corresponding partitions from both sets need to
be joined. In order to avoid data reread, at least one partition of the pair should fit
in memory. If no information about the data distribution is available, sampling data
can help to determine the partition boundaries. There has been some research work
addressing the random sampling problem [1, 7]. We have chosen a similar algorithm
to “determinePartIntervals” algorithm [11] to determine the partition intervals. This
partition algorithm considers partition cost, sampling cost and join cost to minimize the
total I/O. The cost of sampling is computed based on the Kolmogorov test statistic [2].
During sampling, we clustered disk page reads such that sample pages close enough are
read sequentially instead of several random reads. If one partition is larger than memory
size, further partitioning can be applied recursively. In this paper, we assume that each
outer partition can fit in memory, which is also true in our experiments.

Range Partition and Range CacheUnlike the point set, for a range set, there is a
possibility that some ranges can overlap with multiple partitions, no matter how the
partition boundaries are determined. Which partition should we put those long ranges
in? A straightforward solution is to replicate the ranges to all partitions it overlaps.
This requires additional disk I/O to handle replicates. Instead, we adopted the solution
proposed in [11], where the partitioning is performed using only the start point of each
range. A range is put in the partition, where the start point of the range falls in. One
requirement of this method is that the partition join should be evaluated in increasing
order of partitions. When the current partition is done, the ranges that cross the next
partition boundary are kept in memory cache. These ranges in cache will participate in
the join of the next partition.

One nice property of the XML data range set is that the number of ranges crossing
any partition boundary is bounded by the height of the document tree. Thus, we can
pre-allocate the in-memory cache to hold those crossing boundary ranges according to
the tree height. A possible improvement is to use the maximum level difference of the
ranges plus one as the cache upper bound. This upper bound can be obtained before



Algorithm 1: Descendant Partition Join
Input : (ancestor range set, descendant point set)

1 Set range cache to be empty;
2 Determine partition boundaries according to the descendant point set;
3 Partition both range and point sets;
4 for Each partition pair in increasing orderdo
5 Load descendant partition in memory;
6 for Each range in range cachedo
7 Join the range with descendant partition;
8 Remove the range if it doesn’t cross the next partition boundary;

end
9 for Each page of range partitiondo

10 Load the range set page in memory;
11 for Each range in the pagedo
12 Join the range with descendant partition;
13 Put the range in the range cache if it crosses the next partition boundary;

end
end

end

sampling and partition. We can take the size of this in-memory range cache out from
the total memory buffer size before partitioning. So, the partitioning can be done as
normal point data partitioning without considering the boundary crossing problem.

Descendant Partition Join In thedescendant partition joinalgorithm, which is shown
in Algorithm 1, the descendant point set is the outer set. The sampling and partitioning
is based on the point set. During the join phase, each point partition is loaded in memory
to be joined with the corresponding range partition and the cached ranges from previous
range partitions.

In line 7 and line 12, the join operation is to join one range with all the descendant
points in a partition. Since it is an in-memory operation, at first, we directly used the
nested loop join. From our preliminary experimental results, we found that the perfor-
mance of the nested loop join was very bad due to the high CPU and memory access
cost. So, we changed the nested loop to binary search. The descendant point partition
is sorted after it is loaded in memory. When a range is to be joined with the points par-
tition, a binary search is used to locate the first point in the range. Then, we scan the
sorted point set until we reach the last point in this range.

In line 13, after the join of each range, we put the range in the range cache if it
crosses the next partition boundary. At the beginning of the join, the ranges in the range
cache are joined with points first (see line 7). At the same time, we try to eliminate the
ranges that do not cross the next partition boundary, which is shown in line 8. Thus, the
range cache is maintained in such a way that only the ranges crossing the next partition
boundary are kept in memory, and are used in the join of the next partition.

In a partition join, either join input data set can be chosen as the outer set to deter-
mine the partition boundaries. However, partitioning based on the larger input produces
more partitions than partitioning based on the smaller input. With the smaller input set
as the outer set, we can have smaller number of partitions and more sequential I/O. If
the smaller input can totally fit in memory, there is no partitioning needed at all. Usu-
ally, in XML data, the size of the descendant point set is larger than that of the ancestor
range set. So, partitioning based on the ancestor range set could produce better perfor-
mance. We next introduce two partition join algorithms using the ancestor range set as



Algorithm 2: Segment Tree Partition Join
Input : (ancestor range set, descendant point set)

1 Set range cache to be empty;
2 Determine partition boundaries according to the ancestor range set;
3 Partition both range and point sets;
4 for Each partition pair in increasing orderdo
5 Load ancestor range partition in memory;
6 Build a segment tree for ranges in the partition and the range cache;
7 for Each page of point partitiondo
8 Load the point set page in memory;
9 for Each point in the pagedo

10 Join the point using the segment tree;
end

end
11 Dispose the segment tree;
12 Remove from range cache the ranges not crossing the next boundary;
13 Put ranges crossing the next boundary from range partition to range cache;

end

the outer set. They are namedSegment Tree Partition JoinandAncestor Link Partition
Joinbased on their in-memory join algorithms.

Segment Tree Partition Join In partition join algorithms using the ancestor range set
as the outer set, the partitioning is based on the ancestor range set. As in thedescen-
dant partition joinalgorithm, a range cache is also used. During the join phase, each
range partition is first loaded into memory. These ranges in the partition and the ranges
in the range cache are together to be joined with each descendant point from the inner
partition. Because the nested loop join is inefficient, in the segment tree partition join al-
gorithm, which is shown in Algorithm 2, the segment tree [10] is used as the in-memory
algorithm to quickly find a set of ranges containing a point. The worst case space com-
plexity of the segment tree isO(N � logN), whereN is the number of ranges [10]. In
our implementation, we used several techniques to minimize the size of the segment
tree data structure. In this in-memory join context, the ranges and their end-points are
already known. No insertion and deletion of end-points is required after the tree is built.
We can utilize this property to build a static segment tree, which is more compact than
a dynamic one.

The first step of building a segment tree is to sort the end points of the ranges in
memory (duplicate points should be eliminated). Let us suppose the number of ranges
isN . Because the start point of each range is a unique preorder ID number, there are at
leastN points in the segment tree. After sorting, anvirtual empty segment tree is there,
because the parent-child relationship in the segment tree can be determined by the array
index calculation. There is no additional space needed for the structure pointers of the
tree. However, the number of segment tree nodes is twice the size of the point array.
When a range is inserted to the segment tree, a pointer is needed to store the linked list
for each segment tree node. So, at least2N pointers are needed. For each range, at least
one linked list record is associated with it. Each linked list record contains the range
ID and the next link pointer. In total, we need at least3N pointers, andN range ID’s.
If pointers and ID’s are represented by integers, then at least4N integers are required
for the segment tree. This is a large memory requirement, since in our implementation,
each XML element node record only uses four integers. In this case, half of the memory
is used for the segment tree.



Array index 0 1 2 3 4 5 6 7 8 9
Point Value 3 6 8 11 14 15 19 21 23 27

14
(- ∞, + ∞]4

6
(- ∞, 14]1

3
(- ∞, 6]0 8

(6, 14]2

11
(8, 14]3

21
(14, + ∞]7

15
(14, 21]5

19
(15, 21]6 27

(23, + ∞]9

23
(21, + ∞]8

(- ∞, 3] (3, 6] (6, 8]

(8, 11]

(14, 15]

(11, 14] (15,19] (19,21] (23,27] (27,+ ∞]

(21, 23]

Fig. 2.End Point Array and Its Segment Tree

As an example, the table in Figure 2 shows a set of point values along with their
index in an array. In the segment tree illustrated below, the number in a node circle
is the index value. It is empty for leaf nodes, since they are virtual nodes. The point
value and the node range are labeled near each node. The root index value of each sub-
tree is the middle index value of the index range of the sub-tree. That istree root =
b(start index+ end index)=2c. For example, index value 4 is the root of the index
range [0,9], which is the whole tree.

Since memory size is limited, the more memory used for in-memory index like
segment tree, the smaller memory is left for partitions. To solve the large memory oc-
cupation problem of the segment tree, we propose to useAncestor Linkalgorithm for
in-memory join, which is described in the next section.

Ancestor Link Partition Join The control flow of theAncestor Link Partition Join
algorithm is the same as the segment tree partition join algorithm (Algorithm 2), except
that the in-memory join is now theancestor link join. Instead of building a segment
tree, an ancestor link data structure is used. Each descendant point is joined with all the
in-memory ranges using this ancestor link data structure.

According to therange containment property, for any two ranges, either one range
contains the other range, or they are disjoint. We can build arange treeaccording to
the containment relationship. In the range tree, a child range is directly contained in the
parent range, which is the smallest range containing the child. If a descendant pointp
is contained in a rangeR in the range tree, then this pointp is also contained in all the
ancestor ranges of rangeR in the range tree. Using this range tree, we can efficiently
perform the join between a point and a set of ranges.

Since all range records to be joined are already in the buffer memory, no additional
range information needs to be duplicated again in the range tree. In our implementation,
the range tree is only a pointer array, which has the same size as the number of the ranges
in memory. The positions of pointers correspond to the positions of the ranges in the
range array. The content of a pointer is the array index of the parent range. So, an edge
in the range tree is pointing from a child node to a parent node. To build the range tree,
we first sort all the ranges by the start points. After the sorting, the ranges are also in
sorted preorder with respect to the range tree. Then we scan the range array once with
a pointer stack to find the parent of each range and update the ancestor pointer array.
This algorithm is shown in Algorithm 3.



Algorithm 3: Build Ancestor Link
Input : (sorted range array, range tree array)

1 Initialized pointer stack to be empty;
2 for Each range in the range arraydo
3 while pointer stack is not empty and the top of pointer stack is not the parent of the

current rangedo
4 Pop the pointer stack;

end
5 if pointer stack is emptythen
6 Set the current range tree pointer to be null;

else
7 Set the current range tree pointer to be the top of the pointer stack;

end
8 Push the current range pointer to the pointer stack;

end

Next, we show how to find the first (smallest) range containing a given pointp in the
range tree. Since the range array is sorted by the start point, we can use binary search to
find the rangeRp that may contain the pointp. That isRp is the first range whose start
point is smaller thanp. If Rp containsp, then all the ancestors ofRp in the range tree
also containp. If Rp does not containp, we can follow the ancestor link ofRp to find
the ranges that containp. The main advantage of the ancestor link is its small memory
requirement. The whole structure is only an array of pointers. The size is at least less
than one fourth of the segment tree. So, more memory can be used for partitions.

3 Experiment

We implemented these three partition join algorithms discussed in the paper. They
are referred to aspartition-d, partition-sandpartition-a for Descendant partition join,
Segment-tree partition join and Ancestor-link partition join algorithms respectively. For
performance study, we also implemented the sort-merge based algorithms similar to the
Stack-Tree join algorithm (Stack-Tree-Desc) [12]. Two variations of sort-merge join al-
gorithms,sortmerge-sandsortmerge-m, were implemented. Sortmerge-s sorts each in-
put into a single run before the join phase, while sortmerge-m combines the last merge
phase of sorting with the join phase.

The above algorithms were all implemented on top of a paged file layer, which also
provides buffer management functionality. In our experiments, the page size was 4K
bytes. The input files were paged files, and were directly generated from the data-set in
random order. We have chosen two data sets, Shakespeare and DBLP, to demonstrate
the performance. The Shakespeare data set is the Shakespeare’s plays in XML format.
The DBLP data set is a computer science bibliography [9]. In our experiment, we used
the conference portion with a raw data size 58MB.

In the experiments, we measured the elapsed time (both CPU and IO) of query pro-
cessing. For fair comparison, the sorting cost for sort-merge based algorithms, and the
sampling cost for partition based algorithms were both counted in the performance mea-
sure. Since the cost of output generation is the same regardless of algorithms applied,
the output cost was not included in the measurements. Experiments were performed on
an Intel workstation with a Pentium 4 1.6GHz CPU running Solaris 8 for Intel platform.
This workstation has 512M bytes of memory and a 40GB EIDE disk drive (with 7200



Data Set Query Ancestor Descendant
Record#Page#Record#Page#

ShakespeareACT//SPEECH 185 1 31028 122
SPEECH// LINE 31028 122 107833 423

DBLP dblp//author 783 4 320300 1257
inproceedings//author140936 553 320300 1257

Table 1.Queries and Description

RPM and 8ms average seek time). The disk is locally attached to the workstation and
used to store XML data. We used the direct I/O feature of Solaris for all experiments to
avoid operating system’s cache effects.

3.1 Query Performance and Analysis

Table 1 describes the queries we used in the experiments. It also provides the ancestor
range set size and the descendant point set size information. All queries are of the form
“EA==EB”, which is to find the ancestor-descendant element pairs.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

25 75 125 175 225 275 325 375 425 475

Number of Buffer Pages

T
im

e
(s

ec
on

d)

sortmerge-s

sortmerge-m

partition-d

partition-a

partition-s

0

1

2

3

4

5

6

7

8

25 75 125 175 225 275 325 375 425 475

Number of Buffer Pages

T
im

e
(s

ec
on

d)

sortmerge-s

sortmerge-m

partition-d

partition-a

partition-s

(a) ACT//SPEECH (b) SPEECH//LINE

Fig. 3.Shakespeare Data Queries

0

2

4

6

8

10

12

14

16

18

100 400 700 1000 1300 1600 1900

Number of Buffer Pages

T
im

e
(s

ec
on

d)

sortmerge-s

sortmerge-m

partition-d

partition-a

partition-s

0

5

10

15

20

25

100 400 700 1000 1300 1600 1900

Number of Buffer Pages

T
im

e
(s

ec
on

d)

sortmerge-s

sortmerge-m

partition-d

partition-a

partition-s

(a) dblp//author (b) inproceedings//author

Fig. 4.DBLP Data Queries

Figure 3 shows the performance for two queries on the Shakespeare data and Fig-
ure 4 shows the performance for the DBLP data. The performance measure is elapsed



time in seconds with different number of memory buffer pages. Although the size of
the DBLP data is much larger than that of the Shakespeare data, we observed similar
performance trends.

In Figure 3(a) and Figure 4(a), the ancestor set size is small. Since the partition-a
and the partition-s algorithms use the ancestor set as the outer set, there is no need to
do partitioning at all if the memory can hold the outer set. So, their performances are
better than others when the total buffer size is small.

For both sort-merge join and partition join algorithms, if memory buffer can hold
both sets, there is only one scan of the input files needed to load data in memory. That
is the minimum cost for the query processing. So, when the memory buffer size is
large enough, there is a sharp performance increase. After this, the performance remains
almost constant. This trend can be seen from Figure 3(a) and Figure 4(a).

In the sortmerge-m algorithm, the last merge phase of sorting is combined with
the join phase, so the last merge scan is saved. On the other hand, for the sortmerge-s
algorithm, the last sorting merge scan of input files is always needed. It increases both
the I/O and the CPU cost. Among these algorithms, the sortmerge-s algorithm is the
worst, which is clearly shown in Figure 3 and Figure 4.

In Figure 3(b) and Figure 4(b), the ancestor set is large. When neither join set can
fit in memory, all algorithms have to scan the input files at least twice. In this case, the
partition join algorithms (partition-d, partition-a and partition-s) and the sortmerge-m
algorithm have similar performance. From this result, we can also see that the sampling
cost for the partition based algorithms is low. The reason is that the number of samples
is small compared to the whole set, and we also optimized the sampling process using
clustered read technique as described in Section 2.2.

With the memory size getting larger, the performances of the partition join algo-
rithms improve faster than the sortmerge-m algorithm, since the partition join algo-
rithms can avoid partitioning when one join set can fit in memory. For the sortmerge-m
algorithm, it can keep all runs in memory only if the memory is large enough to hold
both join sets. Otherwise, additional I/O for runs is unavoidable. Among the partition
join algorithms, the performance of the partition-a algorithm is the best. The in-memory
join data structureancestor linkrequires less memory thansegment tree. So, more mem-
ory can be used to hold partitions.

The above experimental results provide useful information for query optimization.
If one of the two join sets is much smaller that the other, using the partition join algo-
rithms require less memory. The query optimizer can choose the smaller set as outer set
and the corresponding partition join algorithm.

4 Previous Work

Sort-merge join has been widely used in relational database. For equality queries, hash-
based join can be used as an alternative to sort-merge join. Comparisons of sort-based
and hash-based algorithms show that many dualities exist between the two types of al-
gorithms and both should be available in a query-processing system [4]. There are a
large amount of work has been done in the temporal database area to process temporal
intersection joins [5], in which join predicates over time attributes are mostly of the
inequality type. To process valid-time joins, a partition-based evaluation algorithm has
been proposed [11]. This algorithm utilizes in-memory cache to store “long-lived” tu-
ple and avoids the replication of tuples in multiple partitions. For XML data, with the



introduction ofthe extended preorder numbering scheme[6], XML path queries can
be processed using traditional relational database techniques. For example, sort-merge
based algorithms likeEE-Join, EA-Join andStructure join[12] have been proposed.
Stack-Tree Join[12] algorithms utilizing in-memory stack to hold ancestor nodes have
been proposed to deal with structural join [12].

5 Conclusion

In this paper, we have proposed partition based algorithms, which can be chosen by
query optimizer according to the characteristics of the inputs. An in-memory range
cache is used to hold ranges crossing partition boundaries. In the Ancestor Link parti-
tion join algorithm, we propose to use theAncestor Linkdata structure, which is much
smaller in size compared to the segment-tree. So, more memory can be used for holding
partitions. The experimental results show that the Ancestor Link algorithm can make
the best use of memory buffer and take advantage of the uneven sized inputs. We be-
lieve that those algorithms are necessary choices for query optimizer to consider during
XML query processing.

References

[1] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. Random sampling for his-
togram construction: How much is enough? InSIGMOD 1998, Proceedings ACM SIG-
MOD International Conference on Management of Data, June 2-4, 1998, Seattle, Wash-
ington, USA, pages 436–447, 1998.

[2] David J. DeWitt, Jeffrey F. Naughton, and Donovan A. Scheneider. An evaluation of
non-equijoin algorithms. InProceedings of the 17th VLDB Conference, Barcelona, Spain,
September 1991.

[3] Roy Goldman and Jennifer Widom. DataGuides: Enabling query formulation and opti-
mization in semistructured databases. InProceedings of the 23rd VLDB Conference, pages
436–445, Athens, Greece, September 1997.

[4] Goetz Graefe, Ann Linville, and Leonard D. Shapiro. Sort versus hash revisited.IEEE
Transactions on Knowledge and Data Engineering, 6(6):934–944, 1994.

[5] Himawan Gunadhi and Arie Segev. Query processing algorithms for temporal intersection
joins. InProceedings of the 7th Inter. Conference on Data Engineering, Kobe, Japan, April
1991.

[6] Quanzhong Li and Bongki Moon. Indexing and querying xml data for regular path expres-
sions. InProceedings of the 27th VLDB Conference, Rome, Italy, September 2001.

[7] Richard J. Lipton, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri. Effi-
cient sampling strategies for relational database operations.Theoretical Computer Science,
116:195–226, 1993.

[8] Jason McHugh and Jennifer Widom. Query optimization for XML. InProceedings of the
25th VLDB Conference, pages 315–326, Edinburgh, Scotland, September 1999.

[9] Michael Ley. DBLP Computer Science Biblography. http://www.informatik.uni-trier.de/-
ley/db/index.ht ml, November 2001.

[10] Franco P. Preparata and Michael Ian Shamos. Computational geometry - an introduction.
Springer-Verlag, Berlin/Heidelbrg, Germany, 1985.

[11] Michael D. Soo, Richard T. Snodgrass, and Christian S. Jensen. Efficient evaluation of
the valid-time natural join. InProceedings of the Tenth International Conference on Data
Engineering, February 14-18, 1994, Houston, Texas, USA, pages 282–292. IEEE Computer
Society, 1994.



[12] Divesh Srivastava, Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Jignesh M. Patel, and
Yuqing Wu. Structural joins: A primitive for efficient xml query pattern matching. InPro-
ceedings of the 18th Inter. Conference on Data Engineering, San Jose, California, February
2002.

[13] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman. On support-
ing containment queries in relational database management systems. InProceedings of the
2001 ACM-SIGMOD Conference, Santa Barbara, CA, May 2001.


