
Federated Database System for Scientific Data
Sangchul Kim Bongki Moon

Department of Computer Science and Engineering
Seoul National University

Seoul 08826, Korea
{stdio,bkmoon}@snu.ac.kr

ABSTRACT
Much like traditional databases, scientific data are managed in
multiple separate databases by different sources and organizations.
When such distributed data are analyzed together for more com-
prehensive understanding and prediction, it is necessary to access
data via multiple simultaneous connections or collected in a single
location. The inevitable consequence is, however, that a significant
overhead is incurred due to differences in schemas, data transforma-
tion, and extraneous cost for storing intermediate data. This demo
presents SDF, Scientific Database in Federation, which facilitates data
sharing and exchange in order to support complex analytics with
minimal integration overhead. SDF is currently implemented in
SciDB using user-defined operators, providing two connection mod-
els, master-to-master and cluster-to-master, for a shared-nothing
architecture.

CCS CONCEPTS
• Information systems → Federated databases;

KEYWORDS
Scientific Data; Federated Database System; SciDB

1 INTRODUCTION
High precision and resolution sensors generate diverse types and a
high volume of data for accurate and sophisticated analysis. In order
to manage an increasing volume of data in various types effectively,
data are often organized in multiple databases which can have
different ownership and properties. Data can be partitioned and
distributed geographically in multiple databases across separate
servers, considering their features and purposes of organizations.
When distributed data are analyzed together, it is necessary to

access such data via multiple simultaneous connections or collected
in a single location. If databases are not able to be interconnected
with each other, users themselves have to manually establish the
connections and integrate data in their application. Also, to collect
data in a single location, users should carry out heavy work which
includes downloading and loading data. Since it takes a significantly
long time to load raw data with those many cumbersome steps,
the work is inefficient and inconvenient. Furthermore, users may

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6505-5/18/07. . . $15.00
https://doi.org/10.1145/3221269.3222332

encounter a challenge when the schema for data may not be identi-
cal. Even with a global schema, translating schema is required to
integrate data, which incurs extraneous costs. Hence, it is not easy
to find a simple solution that offers a remedy for complex queries
or analysis using distributed data in multiple databases.
In this demo, we present SDF, Scientific Database in Federation,

which facilitates data sharing and exchange to process complex
queries with minimal integration overhead. SDF is currently im-
plemented in SciDB [1] by user-defined operators (UDO). SciDB is
based on a multi-dimensional array model that is more appropriate
to manage scientific data for data mining or an arithmetic computa-
tion (e.g., matrix computation) than the relational model [2]. UDO
is a plug-in provided by SciDB and helps SDF federate multiple
databases with relatively simple installation. It is aimed at using
SciDB query languages (both AQL and AFL) to allow SDF access
remote databases at the query level. Unlike BigDAWG [3], SDF is
not a middleware solution to federate databases.
For scientific analysis, users pose a query via the SciDB client

interface. However, SciDB does not support complex analytics us-
ing data stored in separate databases since it is only able to access
a single database. Adopting the principle of a federated database
system, SDF abstracts away details about the process of combining
and integrating databases, which considerably appeals to scientists
who need to pose sophisticated analytics but do not have exper-
tise in database systems. For instance, scientists need not declare
a global schema in advance for federated query processing. In-
stead, a schema in a remote database is generated during the query
execution time. SDF accepts the primary ownership of systems
(i.e., autonomy) and gives a federated view as a single database
from multiple databases. Moreover, SDF preserves unique system
features including numerous analytics libraries while accessing re-
mote databases. The main advantage is the ability to combine data
from multiple databases in a single query statement and cooperate
separate databases together for complex analysis.
Since SciDB has a shared-nothing architecture, SDF provides

two connection models, master-to-master and cluster-to-master, to
establish a connection between SciDB clusters. Especially, in the
cluster-to-master model, a remote query is converted into localized
queries, which leverages the performance such as an aggregate
query. SDF allows SciDB to operate within different back-end stor-
age or clusters. It helps perform complex analytics and aggregate
data, as granting a data warehouse to be used without any modifi-
cation.

This work was partly supported by a grant (K-16-L03-C01-S03) funded by the min-
istry of science, ICT, and future planning, Korea and PF Class Heterogeneous High
Performance Computer Development (NRF-2016M3C4A7952587).

https://doi.org/10.1145/3221269.3222332

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy
Sangchul Kim Bongki Moon

Section 2 describes the background knowledge of the federated
database system. In Section 3, we present the system architecture of
SDF and federated query processing. Section 4 describes our demon-
stration scenarios. Finally, we conclude our work in Section 5.

2 FEDERATED DATABASE SYSTEM
A federated database system [6] virtually maps multiple databases
into a single database for data sharing and exchange. The system is
composed of disparate databases that can be described as virtual
databases since it migrates physically or geographically distributed
databases into a single database interconnected via networks. For
operating tasks with (heterogeneous) data, a federated schema is
essential to use or access data belonging to a remote database. The
principle of the system has been adopted in several popular open-
source database systems [4, 5].

The federated database system is able to abstract away integrat-
ing processes, enabling access to a remote database without tuning
database system engines. By this abstraction, this system can pro-
vide an interface for standard queries to store and retrieve data.
Since a result can be composed of sub-query results, the system
should process a decomposable query to submit it to federated
DBMSes. Given that the federated database system consists of sev-
eral various systems that use different query languages, it needs
an intermediate translator to translate the different languages into
their proper languages or vice versa.
The federated database system maintains the authority of au-

tonomous systems, each of which can cooperate with the high-level
integration. It accepts the primary ownership of each system rather
than uses centralized control. That is, it does not require any global
schemas for all local schemas and does not dedicate itself to access
databases. It enables to access data in remote databases using a
global interface as a local database and need not reconstruct the
appropriate information whenever the access is requested. The ar-
chitecture of this system is suitable for taking self-sufficient and
stand-alone DBMSes while maintaining the autonomy of them. The
access to a remote database is possible without altering functions
of an application and impacting on other applications.

3 DESIGN OF SDF
Basically, data sharing and exchange with disparate databases are
infeasible. To access a remote database, a DBMS should support
integrating operations with minimizing overhead. We adopt the
principle of a federated database system to provide a view as a single
database frommultiple databases.We add the novel feature to SciDB,
called SDF, Scientific Database in Federation. SDF federates multiple
databases by decomposing a federated query into sub-queries and
posing a remote query to a remote SciDB. This federated query
follows the process of a regular query. When posing a query to
a local SciDB, users utilize array information such as array and
attribute names. Similarly, to pose a federated query, remote array
information with a remote database name which indicates a target
remote SciDB is used.

There are two benefits of SDF. First, a remote query statement can
be simpler. The vanilla SciDB would demand the information of a
remote database to establish a connection. In SDF, however, once the
name of a remote database is registered, its information is provided.

Second, it is convenient to access distributed data simultaneously
by a single query. For example, suppose in the example given below,
cloud is a local array and seawifs is in a remote database, the
following query

join(cloud, connector(‘remote’, ‘seawifs’))

is able to be processed. The connector is a key operator of SDF
and enables a local SciDB to access remote databases. Since the
abstraction of federated processing makes it unnecessary to modify
a system engine every time different databases are federated, SDF
can provide a scalable database view.

3.1 System Architecture
For the federated query processing, a query is decomposed into
sub-queries. For example, the above example query is decomposed
into connector and join. After receiving a remote query from a local
SciDB, the remote SciDB processes the query and sends a foreign
array to a local SciDB. The foreign array is referred to as a result
of a remote query processed by a remote SciDB. Then, the local
SciDB maps the foreign array to a local array and processes the
decomposed query (e.g., join in above example). The architecture
of SDF is in Figure 1, and we describe seven modules as follows.

Modules
SDF has seven modules to process a federated query, implemented
by user-defined operators (UDO). It is relatively easy to add new
algorithms or operations to SciDB using UDO. Compared with
developing a new feature in a database engine, installation of UDO
is not required to re-build SciDB.

Address Manager manages information of remote databases
such as an IP address and port number. The information is stored in
PostgreSQL because it is suitable for frequent inserts and updates
rather than SciDB. A SciDB cluster consists of several instances that
are independent workers for query processing, but only the master
instance has this module.

Connector establishes a connection between local and remote
SciDB clusters. The connection should be maintained until the
transmission of a foreign array is complete.

Executor sends a query to a remote SciDB via Connector. If an
array does not exist or the syntax of a remote query is incorrect,
the remote SciDB returns error messages. Otherwise, the query is
processed, and the remote SciDB returns a schema and a foreign
array.While Executor submits a remote query, additional parameters
informing a query type (requesting either a schema or an array)
piggyback on the query. If an array is requested, the query brings
parameters such as an instance ID and the number of instances.

Schema Manager receives the schema of a foreign array from
a remote SciDB, which makes it unnecessary to declare the schema
ahead of time. Especially, the schema of an original array can be
transformed if a query (e.g., aggregate) create a new array different
from an original array. The schema is used to create a virtual array
in a local database.

Receiver receives a foreign array from a remote database. The
transmission unit can be either a cell or a chunk. A cell contains one
or more attributes, and a chunk is a group of cells and a physical
unit of I/O.

Federated Database System for Scientific Data SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

Remote SciDB

PostgreSQL
(Link Table)

Port #: 1239 Port #: 1249

Local SciDB

Scientific Database in Federation

Address
Manager

DB

DB

IP:
10.0.0.3

IP:
10.0.0.2

Remote SciDB

DB

SDF

Port #: 1239

Port #: 1249

SDF

C
on

ne
ct

or

Transmitter

Transmitter

DB

Executor

Merger

Receiver Schema
Manager

Execution

Connection

Tr
an

sm
itt

er

Figure 1: SDF architecture: local and remote SciDB clusters are connected for federated query processing. Each SciDB can be
connected using IP addresses, and databases are distinguished by their unique port number.

Local
Query
(AFL, AQL) Query Planner

Query Executor

Remote
Query Planner

Query Executor

Query ResultQuery Result
Receive
a foreign array

Figure 2: Processing sequence to process a federated query.

Merger produces a virtual array using a schema from Schema
Manager and an array from Receiver. While receiving a foreign
array, Receiver directly passes the received chunks to Merger to
create a virtual array in a local database.

Transmitter sends a schema or a foreign array to a local SciDB.
A local SciDB should also use Transmitter when sharing arrays
between local databases. In a cluster-to-master model described
in Section 3.3, Transmitter filters out cells, not involved in a for-
eign array using chunk ID, and sends a foreign array to instances
corresponding to instance ID.

3.2 Federated Query Processing
There are a few steps for message exchange to process a federated
query. To access a remote database, a local SciDB must create a link
to a remote SciDB. As an IP address is required to establish a con-
nection to a remote SciDB and port numbers distinguish multiple
databases, any user who attempts to access other databases should
obtain them in advance. SDF provides an alias (i.e., a database name)
to retrieve the information from PostgreSQL where SciDB stores
its metadata.
After the connection is established, a local SciDB can access a

remote database. Since the local SciDB does not have the schema of
a foreign array, it requests the schema before receiving the foreign
array. As the schema is received in the query execution time, it
need not be declared in advance; thus, the local SciDB can avoid
translating a result to a local schema. Then, local SciDB submits a
remote query to a remote SciDB as Figure 2. After entirely receiving

the foreign array, the local SciDB sends a message that the whole
process has completely executed. Then, the connection between a
local SciDB and remote SciDB is closed.

3.3 Connection Model
Since SciDB runs in a cluster environment, establishing a connec-
tion between clusters should be provided. SDF provides two con-
nection models, master-to-master and cluster-to-master, for shared-
nothing architecture. A cluster-to-master model has a more com-
plicated process but better performance than a master-to-master
model.
A master-to-master model is that a master of a local SciDB

connects with a master of a remote SciDB. As all modules are in a
local master, a local master sends a remote query to a remote master
and receives a foreign array alone. Then, the master distributes data
corresponding instance ID. A federated query can be processed
without setting the equivalent number of instances of federated
SciDB clusters because the connection is only established between
two masters.

In contrast to the master-to-master model, a cluster-to-master
model can directly distribute a foreign array to local instances.
This model also does not require the identical number of instances
between local and remote SciDB clusters. In order to process a fed-
erated query,Address Manager retrieves the information of a remote
SciDB and its database, the same as the process of master-to-master
model. Afterward, it broadcasts the information to local SciDB in-
stances. When they receive it, Connector connects all instances to a
remote master. Then, the instances transform the query to localized
queries and pose them to a remote master. Internally, the number
of instances and each instance ID piggyback on a localized query.

In a remote SciDB, while queries are processed, Transmitter pre-
pares sub-arrays to send them to corresponding instances. It uses a
foreign array schema to calculate the hash value which determines
the target instance of each chunk. It is critical when an aggregate
query is processed. With the query, the schema may be re-created,
which leads to changing not only hash values but also a subset of
cells. This subset is used to create a sub-array for a corresponding

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy
Sangchul Kim Bongki Moon

Remote login

Cluster 1 Cluster 2

Master

2. Cluster1 requests data

3. Cluster2 sends data

4. Cluster1 processes a federated query
and return the result

1. Submit a federated query

Trace the query processing

Figure 3: The scenario of the demonstration

instance. If the value is computed from an initial schema, the result
must be incorrect. That is, Transmitter sifts cells to send data to
target instances correctly.

4 DEMONSTRATION SCENARIO
We demonstrate SDF that federates multiple databases and provides
an integrated view. In our showcase, attendees can submit federated
queries, either our example or specified queries by themselves.

Environment. The cluster consists of ten nodes, five nodes for
a local SciDB cluster and the other five nodes for a remote SciDB
cluster. Each node has Intel i7-4770 3.40GHz CPU and 16GB RAM.
Linux kernel version is 3.16.0, and SciDB version is 14.12.

Datasets. We will use SeaWiFS L3 Chlorophyll (in short, CHL)
and MODIS remote-sensing reflectance (in short, RRS). The data
have three dimensions (longitude, latitude, time) and one attribute
(chlorophyll). Each cell is an 8-day average of chlorophyll of the earth
with the resolution of 9km × 9km (CHL) and 4km × 4km (RRS). The
chunk size is 1000 (longitude)× 1000 (latitude)× 1 (time), onemillion
cells in a chunk. We will use two types of RRS for experiments:
RRS (412), RRS (443). These two have the same dimensionality, but
different spectral bands.

Scenarios. Our first scenario is the comparison between the
vanilla SciDB and SDF. Figure 3 shows our demonstration scenario.
Attendees access our cluster via SSH, connecting the master node
(SciDB coordinator). They can submit federated queries using iquery.
According to our scenario, Cluster1 requests data to Cluster2 by
submitting a remote query to Cluster2 in which requested data are
involved. Cluster2 processes the query and sends a foreign array
to Cluster1. Then, SciDB in Cluster1 generates a virtual array and
then returns the result to users. As users cannot see these processes,
we will trace the query processing and visualize logs in real-time.

Table 1 is the preliminary result that will also be presented in
our showcase. It shows the query processing time of SDF and the
vanilla SciDB. Since the vanilla SciDB has a limit to process queries
which require accessing distributed data in different databases si-
multaneously, we used two queries, scan and aggregate, that access
a database. A scan query reads all cells, and an aggregate query
computes an average of chlorophyll over the period and groups

Query Scan Aggregate

Vanilla SciDB 467 6,192

SDF 413 3,380

Table 1: The processing time (second) of two queries.

the result by longitude and latitude. In this evaluation, we used
the cluster-to-master model of SDF. SDF is slightly faster than the
vanilla SciDB using the scan query because, in the vanilla SciDB, the
master of a local SciDB receives an entire array alone. An increase
of the data size also grows the query processing time linearly. Also,
SDF achieves the 1.8x speedup on the aggregate query. Network
overhead for sending a foreign array rarely affects the processing
time because aggregation reduces the data size. In this query, the
size is reduced by 0.2% of the original data size. Rather, loading the
entire array into memory and computing for aggregation affect its
performance, accounting for most of the query processing time. Lo-
cal SciDB instances pose localized queries, which makes concurrent
computation in a remote SciDB.
The second scenario is that we will describe two connection

models. As is described in Section 3.3, the performance is differ-
ent because of their distinguished mechanisms. To evaluate them,
we will use two queries, merge and join. The queries access and
concatenate two arrays. A join operator concatenates attributes by
each dimension, but a merge operator concatenates dimensions of
two arrays. Without SDF, two queries are infeasible to be processed
if two arrays are stored in separate databases.

5 CONCLUSION
In order to process complicated analysis using data in separate
databases, database federation is necessary. In this demo, we present
SDF, built in SciDB, which adopts the principle of a federated data-
base system for a shared-nothing architecture using UDO. SDF ab-
stracts away integrating processes, preserving system features and
the primary authority of each SciDB; it facilitates the data sharing
and exchange within multiple databases, providing an intercon-
nect interface. It will be one of the big data solutions for numerous
consolidated resources and help enhance scientific analytics.

REFERENCES
[1] Paul G Brown. 2010. Overview of SciDB: Large Scale Array Storage, Processing and

Analysis. In Proceedings of the 2010 ACM SIGMOD Conference. ACM, Indianapolis,
indiana, USA, 963–968.

[2] Philippe Cudre-Mauroux, Hideaki Kimura, Kian-Tat Lim, Jennie Rogers, Samuel
Madden, Michael Stonebraker, Stanley B Zdonik, and Paul G Brown. 2010. SS-DB:
A Standard Science DBMS Benchmark. Extremely Large Databases Conference
2010.

[3] Jennie Duggan, Aaron J Elmore, Michael Stonebraker, Magda Balazinska, Bill
Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and Stan Zdonik.
2015. The BigDAWG Polystore System. ACM Sigmod Record 44, 2 (2015), 11–16.

[4] MySQL. 2017. Federated Storage Engine of MySQL. https://dev.mysql.com/-
doc/refman/5.7/en/federated-storage-engine.html. (2017).

[5] PostgreSQL. 2017. PostgreSQL 9.6.1 Documentation. https://www.postgresql.org/-
docs/9.6/static/postgres-fdw.html. (2017).

[6] Amit P Sheth and James A Larson. 1990. Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases. ACM Computing Surveys
(CSUR) 22, 3 (1990), 183–236.

	Abstract
	1 Introduction
	2 Federated Database System
	3 Design of SDF
	3.1 System Architecture
	3.2 Federated Query Processing
	3.3 Connection Model

	4 Demonstration Scenario
	5 Conclusion
	References

