
Dynamic In-Page Logging for Bþ-tree Index
Gap-Joo Na, Sang-Won Lee, and Bongki Moon

Abstract—Unlike database tables, Bþ-tree indexes are hierarchical and their structures change over time by node splitting operations,

which may propagate changes from one node to another. The node splitting operation is difficult for the basic In-Page Logging (IPL)

scheme to deal with, because it involves more than one node that may be stored separately in different flash blocks. In this paper, we

propose Dynamic IPL Bþ-tree (d-IPL Bþ-tree in short) as a variant of the IPL scheme tailored for flash-based Bþ-tree indexes. The

d-IPL Bþ-tree addresses the problem of frequent log overflow by allocating a log area in a flash block dynamically. It also avoids a

page evaporation problem, imposed by the contemporary NAND flash chips, by introducing ghost nodes to d-IPL Bþ-tree. This simple

but elegant design of the d-IPL Bþ-tree provides significant performance improvement over existing approaches. For a random

insertion workload, the d-IPL Bþ-tree outperformed a Bþ-tree with the plain IPL scheme by more than a factor of two in terms of page

write and block erase operations.

Index Terms—Dynamic in-page logging, flash memory indexing, Bþ-tree.

Ç

1 INTRODUCTION

THE recent advances in the flash memory technology
have garnered much attention from various sectors of

industry from mobile devices to home entertainment and
appliances to business enterprises. Due to its superiority in
access latency, energy consumption and the two-fold
annual increase in its density, flash memory storage
devices, mostly in the form of solid state drives (SSDs),
are being adopted rapidly by storage and database vendors
for large-scale enterprise servers. However, the erase-
before-update property of flash memory is still considered
the most serious limitation that would result in tardy small
random writes, which are fairly a dominant access pattern
in database tables and indexes.

Recently, a new buffer and storage model called In-Page

Logging (IPL) has been proposed to optimize the write

performance of flash-based database systems [1]. The key
idea of the IPL scheme is to colocate data pages and their

associated log records in the same flash block such that the
amount of physical writes is minimized at the nominal

overhead of read operations. By writing physiological log
records into the same block containing the corresponding

data pages without updating the data pages themselves in
place, the IPL scheme can effectively overcome the erase-

before-update limitation of flash memory. It has been shown
that the IPL scheme can improve substantially the I/O

performance of a flash-based database system for database
tables [1] and Bþ-tree indexes [2].

Unlike database tables, Bþ-tree indexes are hierarchical
and their structures change over time by node splitting
operations, which may propagate changes from one node to
another. The node splitting operation is difficult for the IPL
scheme to deal with, because it involves more than one
index node that may be stored separately in different flash
blocks. This will lead to serious concerns we call frequent log
overflow and page evaporation problems. As we discuss in
more detail in Section 2.3, the performance of the IPL
scheme might deteriorate without addressing these con-
cerns adequately.

In this paper, we present Dynamic IPL Bþ-tree
(d-IPL Bþ-tree in short) as a variant of the IPL scheme
tailored for flash-based Bþ-tree indexes so that the frequent
log overflow and page evaporation problems can be
addressed. The d-IPL Bþ-tree improves the utilization of
flash blocks by allocating a log area within a flash block
dynamically, and avoids frequent log overflow by reducing
the number of log records required by a node splitting
operation. Specifically, the d-IPL Bþ-tree stores a new
index node and an old index node from which the new one
is split in the same flash block, so that the structural change
caused by a node splitting operation can be represented by
a few physiological log records. This simple but elegant
design of the d-IPL Bþ-tree improves the performance
significantly. For a random insertion workload, the
d-IPL Bþ-tree outperformed a Bþ-tree with the plain IPL
scheme by more than a factor of two in terms of page write
and block erase operations.

There have been several studies for flash-based Bþ-tree
indexes [3], [4], [5]. They assume a software layer called a
Flash Translation Layer (FTL) as a substratum for the Bþ-
trees, which provides a block device interface for upper
layers by emulating operations of a disk drive using flash
memory. Due to the FTL dependency, however, the FTL-
based approaches cannot utilize the characteristics of flash
memory fully, and their performance may not be scalable
or predictable.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012 1231

. G.-J. Na is with the School of Information and Communication
Engineering, Sungkyunkwan University, Suwon, 440-746, Korea, and
the Electronics and Telecommunications Research Institute (ETRI),
Daejon, 305-700, Korea. E-mail: funkygap@etri.re.kr.

. S.-W. Lee is with the School of Information and Communication
Engineering, Sungkyunkwan University, 300 Cheoncheon-Dong, Jangan-
Gu, Suwon, Gyeonggi-Do, Korea. E-mail: wonlee@ece.skku.ac.kr.

. B. Moon is with the Department of Computer Science, University of
Arizona, Gould-Simpson Bldg., Room 746 PO Box 210077, Tucson, AZ
85721-0077. E-mail: bkmoon@cs.arizona.edu.

Manuscript received 24 Feb. 2010; revised 24 Aug. 2010; accepted 30 Oct.
2010; published online 1 Feb. 2011.
Recommended for acceptance by B.C. Ooi.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-02-0108.
Digital Object Identifier no. 10.1109/TKDE.2011.32.

1041-4347/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

The key contributions of this work are summarized as
follows: first, we discover the problem of frequent log
overflow caused by a node splitting operation in a Bþ-tree
under the plain IPL scheme. Second, in order to address the
problem, we extend the IPL scheme such that log areas are
dynamically allocated, two splitting nodes are colocated in
the same flash block, and a node split event can be
represented succinctly in a few physiological log records.
Third, to address the page evaporation problem imposed by
the contemporary NAND flash chips, we introduce the
notion of a ghost node to the dynamic IPL scheme. Fourth,
we evaluate the performance of d-IPL Bþ-tree in compar-
ison with existing FTL-based Bþ-tree approaches.

The rest of this paper is organized as follows: Section 2
reviews related work such as the IPL scheme and existing
FTL-based Bþ-tree approaches, and discusses the motiva-
tions of the d-IPL Bþ-tree we propose in this paper.
Section 3 describes the structure of the d-IPL Bþ-tree
index and presents its key ideas such as dynamic log areas,
ghost nodes, and log write policies. Sections 4 and 5
present the procedures for insertion, deletion, and search
operations. Section 6 analyzes the performance of the
d-IPL Bþ-tree index. Finally, Section 7 summarizes the
contribution of this paper.

2 RELATED WORK AND MOTIVATION

In this section, we review existing FTL-based Bþ-tree
approaches as well as the IPL scheme proposed for flash
memory-based database systems. We also provide the
motivations of this work by defining the problems that
would occur when the IPL scheme was applied to Bþ-tree
indexes without taking the characteristics of hierarchical
Bþ-tree indexes into consideration.

2.1 Bþ-tree Indexes with Underlying FTL

Flash memory does not allow any data item or a page
containing the data item to be updated in place just by
overwriting it [6]. In order to update an existing data item
stored in flash memory, a time-consuming erase operation
must be performed in advance. Besides, the erase
operation cannot be performed selectively on a particular
page, and can only be done for an entire block (or an erase
unit) containing the page to be updated. A block is much
larger (typically 64 or 128 times) than a page, and a block
erase operation is much costlier than a page read or page
write operation.

In order to hide its unique characteristics different from
existing block devices such as disk drives, most flash
memory storage devices are equipped with a firmware or
software layer called a FTL [6]. The FTL provides a block
device interface for upper layers by emulating operations
of a disk drive, and is responsible for several essential
functions of flash memory storage devices such as address
mapping and wear leveling. Therefore, it will be con-
venient to build a conventional disk-based Bþ-tree index
on top of FTL. However, the frequent random writes of
Bþ-tree indexes make the conventional approach vulner-
able to performance degradation due to the erase-before-
update limitation of flash memory. Most existing flash-
aware approaches still utilize FTL as an underlying layer to

build Bþ-tree indexes but they adopt additional strategies

to avoid random write operations as much as possible.

This section introduces such FTL-based flash-aware Bþ-

tree indexes as BFTL [3] and FlashDB [4], and discusses

their limitations.

2.1.1 BFTL

To the best of our knowledge, BFTL [3] is the first flash-

aware Bþ-tree designed on top of FTL. Its objective is to

minimize the amount of redundant writes that may be

required by flash memory limitations. BFTL represents an

insert/update/delete operation applied to a Bþ-tree node as

a log record, and stores the log data sequentially in a RAM

area called a reservation buffer. The log data are flushed to

flash memory when a node-sized buffer slot becomes full.
Since BFTL does not dedicate a physical storage unit to a

set of log records belonging to the same tree node, the log

records of a tree node can be scattered in many different

physical pages in flash memory. For this reason, BFTL

needs to maintain a complex node translation table (NTT)

that maps each logical node in a Bþ-tree index to the pages

containing any log record of the node. Consequently, when

a node is accessed, the node should be constructed on the

fly by reading all the pages containing its log records from

flash memory.
In order to reduce the read overhead in BFTL, a

compaction operation is invoked for a node, when the
number of pages containing any log data of the node
exceeds a predefined threshold value. For the compaction
operation, BFTL reads the pages containing the log data of
the node, builds the node in RAM, and then write the node
back into a series of pages. The more compaction operations
are invoked by BFTL, the less page read operations may be
needed but the more write and erase operations will be
required. In addition, BFTL does not suggest any kind of
garbage collection for the invalid pages at the logical file
system level, after the compaction operation.

2.1.2 FlashDB

Nath et al. have proposed another approach called FlashDB

with self-tuning features [4]. FlashDB tunes the perfor-

mance of a Bþ-tree index by separating tree nodes into two

groups by their access patterns. If a tree node is more read

than written, the node is referred to as disk type and stored

just like a tree node of a conventional disk-based Bþ-tree

index. If a tree node is more written than read, the node is

referred to as log type and managed by a strategy similar to

BFTL. In order to deal with changing access patterns, a cost

function is used to determine the type of each tree node

such that the overall IO cost of a Bþ-tree index is minimized.

However, this will also increase the memory usage to keep

track of read and write operations and incur additional

overhead to change the type of a tree node back and forth.
Like BFTL, FlashDB relies on the heavy use of data

structures stored in RAM, which makes it vulnerable to

sudden power failures. In addition, the performance of BFTL

and FlashDB is not predictable because they use FTL as an

underlying layer, and it can vary considerably depending on

the characteristics of a chosen FTL implementation.

1232 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012

2.2 In-Page Logging Bþ-tree Index

The IPL scheme takes advantage of logging for write
reduction so that the overall I/O performance of a flash
memory-based database system is improved [1]. In contrast
to conventional logging where log data are appended
sequentially (e.g., log-structured file system [7]), IPL
attempts to address the erase-before-update limitation of
flash memory by colocating log records with their corre-
sponding data pages in the same flash blocks. This can
reduce the absolute volume of writes significantly at the
nominally increased cost of read operations. As a pure
electronic device without any moving part, the write speed
of flash memory is uniform regardless of the physical
location where a write operation needs to be performed.
Therefore, with flash memory, log records can be stored in
the same flash block with the corresponding data pages
regardless of their physical location without incurring
excessive latency for random writes.

One obvious benefit of colocating data pages and their
log records is that the cost of a page read (including the cost
of accessing its log records) cannot be more than accessing a
flash block containing the page and the log records, because
they can always be found in the same block. Besides, the
IPL scheme attaches an in-memory log sector to a buffer
frame, when the buffer frame becomes dirty. An in-memory
log sector (512 bytes) can absorb several update operations
before it becomes full or its associated page frame is evicted
by the buffer manager. When a dirty page frame is evicted,
its in-memory log sector is written to flash memory but the
page itself is not. Note that such a sector write, smaller than
a page write, is feasible, because most contemporary (SLC-
type) flash memory chips support partial programming.1 We
assume that sector writes are allowed by the partial
programming of flash memory chips.

IPL Bþ-tree [2] was the first attempt to apply the IPL
scheme to Bþ-tree indexes without having to rely on a
particular FTL implementation. It adopts the in-page
logging strategy to deal with frequent updates required
for a flash-based Bþ-tree index. As will be described in the
next section, however, the plain IPL scheme is not capable of
dealing with frequent updates adequately, because a node
splitting operation of Bþ-tree involves more than one index
node that may be stored separately in different flash blocks.

In this paper, we propose a new flash-aware and FTL-
independent index structure called d-IPL Bþ-tree to mini-
mize the number of required block level operations. The
d-IPL Bþ-tree index uses log areas dynamically to improve
the utilization of flash memory and stores newly split tree
nodes temporarily as ghost nodes to deal with node splitting
operations efficiently.

2.3 Problem Definition

Insertion and deletion operations of a Bþ-tree index do not
consume log areas rapidly unless they cause structural
changes in the Bþ-tree. When a tree node needs to be split,
however, if the old and new nodes have to be stored

separately in different flash blocks, log areas will be
consumed rapidly because the node split operation cannot
be represented by a few physiological log records.
Furthermore, this problem is often exacerbated due to the
sequential page write requirement of most contemporary
NAND flash memory chips.

2.3.1 Frequent Log Overflow

Fig. 1 illustrates a node split operation of an IPL Bþ-tree
index. When a tree node E is split from an existing node B, it
may suffice to produce a few log records to describe this
operation physiologically. Since the IPL scheme requires
that data pages are associated with their own log sectors
independently from each other, the node B needs a log
record that denotes the removal of half of its entries and the
node E needs a log record that denotes the insertion of the
other half of B’s entries. Although the IPL scheme requires
that data pages and their log sectors are colocated in the
same flash block, it is not guaranteed that the nodes B and E
will be stored in the same flash block. Therefore, if the
nodes B and E are written to two different blocks, then these
blocks become subject to subsequent block cleansing opera-
tions independently from each other. If the block containing
the node B is cleansed, then the log records of B will not be
available to the node E any longer. This makes it impossible
to compute the new version of node E. One way of avoiding
this problem is to store “physical” log records—one for each
entry in a tree node—instead of physiological log records,
when a tree node is split. This approach, however, would
require each node split operation produces as many log
records as the entries stored in a node, which would in turn
end up consuming log sectors in the block very quickly. We
call this problem a frequent log overflow.

2.3.2 Page Evaporation

Recently, as the capacity of flash memory chips grows, most
flash memory manufacturers have imposed a new restric-
tion that pages in a flash block should be written in a
sequential order [8]. Under the original IPL scheme, a fixed
size of log area is allocated in a preset portion of a flash
block—typically in highly addressed consecutive sectors.
Consequently, as shown in Fig. 2, if a page in a nonfull
block is updated, a new log sector will be written into the
log area of the block, which may leave a region of free pages
in the middle of the block that can never be written into

NA ET AL.: DYNAMIC IN-PAGE LOGGING FOR Bþ-TREE INDEX 1233

1. Although a page (typically 2 KB) is the basic unit of read and write
operations, SLC-type flash memory chips allow a limited number of partial
writes to be performed on a flash memory page [8], [9]. Therefore, it is
possible to write a page with a single page write operation or with four
separate (512 byte) sector write operations.

Fig. 1. Node split of IPL Bþ-tree.

because of the sequential page write requirement. We call this

a page evaporation problem.

3 THE DYNAMIC IPL Bþ-TREE INDEX

3.1 Structure of the Index

Unlike magnetic disk drives that have a page (or a sector) as

a single unit of I/O operations, flash memory have two

units of operations, namely, a page for read/write opera-

tions and a block for erase operations. As a flash-aware

indexing structure, the d-IPL Bþ-tree incorporates both the

notions of nodes (a node consist of several pages) and

blocks in its design of hierarchical structure.
The node-level structure of a d-IPL Bþ-tree is exactly

the same as that of a conventional Bþ-tree, except for

following definition:

N.a.Every node except the root is created by a node split
when an existing node becomes full. The new node
split from an existing one is first created as a form
of ghost node and embodied later to a regular node
by either a block split or a block cleansing
operation. (See Section 4 for the block split and
block cleansing operations.)

A ghost node defined above is essentially a group of

physiological log records stored in a log area rather than a

regular node stored physically in consecutive pages.
In addition to the node-level structure, the d-IPL Bþ-tree

has a hierarchical block-level structure defined as follows:

B.a. A flash block consists of a data area and a log area.
The data area stores regular nodes, while the log
area stores the physiological log records of the
regular nodes that have been updated. The ghost
nodes are also represented as physiological log
records stored in the log area.

B.b.The d-IPL Bþ-tree has only one block containing the
root node. Each nonroot block stores a group of
nonroot sibling nodes (either regular or ghost)
residing at a consecutive location of the same level
of the d-IPL Bþ-tree.

B.c. For insertion only workload, the minimum occu-
pancy of 50 percent is guaranteed for each block
except for the root block and the child blocks of the
root block.

B.d.When a new node is split from an existing one, the
new node is always created in the same block where
the existing node is stored. If a block runs out of
space for a new node, the block is split such that the
requirement (B.b) is satisfied.

Following the IPL scheme, the nodes of a d-IPL Bþ-tree
index are colocated with their log records in the same flash
block. Unlike the plain IPL scheme, however, the amount of
log data that a flash block can store varies from block to
block, because a log area stores not only log records but also
ghost nodes starting right after where regular nodes are
stored in the flash block.

When a block overflows with too many tree nodes, the
block is split into two blocks, each with half of the nodes,
satisfying the 50 percent minimum occupancy. Exceptions
of the guaranteed occupancy are the root block and the
child blocks of the root block. This is because the root index
node is allowed to have a fewer child nodes than the other
index nodes, and the number of child nodes may not be
enough to fill up the child blocks of the root block.

Fig. 3 shows an example d-IPL Bþ-tree index structure.
As illustrated in the upper half of Fig. 3, d-IPL Bþ-tree has
a hierarchical node structure like a conventional Bþ-tree,
and each node of the d-IPL Bþ-tree is stored in a flash
block denoted by dotted boxes. The lower half of Fig. 3
shows an example of flash blocks and the relationships
between a block and its member nodes.

3.2 Dynamic Log Area and Ghost Node

As described in Section 2.3.1, the problem of frequent log
overflow is caused by a node split operation when an
existing node and a new node split from it are stored in
two different flash memory blocks. In order to prevent
frequent log overflows, d-IPL Bþ-tree executes a block split
operation prior to a node split operation, if the flash
memory block containing the node to be split runs out of
space for a new node. In other words, if a block is full of
nodes, either regular or ghost, then the block is split

1234 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012

Fig. 2. Page evaporation problem.

Fig. 3. Structure of the d-IPL Bþ-tree index.

preemptively so that a node split operation can be carried
out within a single block with enough room for a new
node. Specifically, a block split operation allocates two
clean flash memory blocks, and distributes the index nodes
between the two blocks equally. While nodes are moved
from an old block to the two clean blocks, their log records
are applied to the nodes so that all the nodes are stored as
the current versions in the new blocks.

Right after a preemptive block split is completed, each of
the two blocks will be half full of regular index nodes, and
the other (or bottom) half of each block will remain clean.
Since the bottom half of each block, right next to where
index nodes are stored, is clean, we can always write into
the rest of the block sequentially from top to bottom without
violating the sequential write restriction of flash memory.
This allows us to avoid the page evaporation problem.

Note that the purpose of a preemptive block split
operation is to guarantee that a node split always occurs
within a flash memory block containing the node to be split.
By having an existing node and a new one split from it
stored in the same flash memory block, a node split
operation can be represented by a few physiological log
records instead of a large number of physical log records.
This allows us to avoid the problem of frequent log
overflows in flash blocks.

When a node is split from an existing node without
causing a block split, the new node will be stored in the
current block where the existing node is stored. The new
node, however, will not be stored as a regular node because
it will be stored in a log area in the block. Instead, the new
node will be stored as a group of log record, and this type of
an index node is called ghost node in d-IPL Bþ-tree. The
novelty of our approach lies in that newly split ghost nodes
as well as updates made to a regular node are uniformly
represented by log records.

A ghost node in a block will be embodied into a regular

node by a subsequent block cleansing operation, which is

invoked when a block runs out of free log sectors. If a block

cleansing is invoked for a block, all the update log records

in the block are applied to their corresponding index nodes

to compute the current versions and all the ghost nodes in

the block are embodied by creating regular nodes for them.

All the current and regular nodes created by the block

cleansing operation will be stored in a clean flash memory

block. When a block cleansing operation completes, the log

area of a block will be smaller than it used to be, because the

number of regular nodes stored in the block will increase as

much as ghost nodes become regular. In fact, the log area of

a flash memory block is set to occupy the half of the block

by a block split operation, but its size can shrink as small as

just a single index node as the block is cleansed repeatedly.

3.3 Log Write Policy

As d-IPL Bþ-tree adopts the in-page logging strategy, log
records collected in the in-memory log sector for an index
node are written to flash memory following the rules below.

. Rule 1. When a dirty buffer frame is evicted by a
buffer replacement mechanism, the corresponding

log sector is written to a log area in the correspond-
ing flash block.

. Rule 2. When an in-memory log sector becomes full,
the log sector is written to the log area in the
corresponding flash block.

The first rule follows the traditional disk-based buffer
replacement mechanism except that only the log records are
written to a log area without writing the buffer frame (or
index node) itself. The second rule is related to the fact that
the IPL scheme assigns a fixed size in-memory log sector to
each dirty page. A full in-memory log sector needs to be
flushed to flash memory so that further updates on the
buffer frame can be logged in a clean in-memory log sector.

Additional care should be taken for d-IPL Bþ-tree,
because node splitting operations should also be recorded
as a log record. Once a node is split into two nodes, each of
the two nodes will eventually write its log sectors into a
flash block. As required by the IPL scheme, a tree node and
its log sectors must be co-located in the same block.
Furthermore, d-IPL Bþ-tree requires that the two nodes
split from the old one must reside in the same block.
Consequently, the log sectors produced by a node splitting
operation must be written to the same flash block. Hence,
an additional rule about writing log sectors is needed.

. Rule 3. The log sectors involved in a node splitting
operation should be written to the same log area.

4 INSERTION AND DELETION

The d-IPL Bþ-tree index deals with both insertion and
deletion operations in the same way, by storing physiolo-
gical log records in the log area. In this section, we first show
how an insertion operation works in a d-IPL Bþ-tree index,
and then describe its deletion operation. Like most conven-
tional Bþ-tree indexes, d-IPL Bþ-tree performs an update
request by a deletion operation followed by an insertion
operation.

4.1 Insertion of an Entry

Even for a conventional disk-based Bþ-tree index, an
insertion is a complex operation that may involve recursive
node splits and propagation of splitting key values to the
ancestor nodes along the path from a leaf node. The structure
of d-IPL Bþ-tree makes an insertion operation even more
complex, because there are a few factors concerning the log
areas that should be taken into account for maintaining the
integrity of block hierarchy of a d-IPL Bþ-tree index.

As summarized in Fig. 4, the insertion algorithm of
d-IPL Bþ-tree first obtains the physical block number of an
index node by invoking getBlockNumber function. Then,
depending on the status of the node (availability of a free
entry in the node) and the block (availability of a free log
sector in the block), it performs an insertion operation with
or without invoking Node Split, Block Split, and/or Block
Cleansing operations.2

NA ET AL.: DYNAMIC IN-PAGE LOGGING FOR Bþ-TREE INDEX 1235

2. Note that d-IPL Bþ-tree provides block cleansing operations instead
of block merge operations. While a block split operation splits a flash
memory block into two, a block cleansing operation is applied to a single
flash block. d-IPL Bþ-tree need not support a block merge operation that
merges two blocks into one, because deleting an index entry is dealt with by
adding a physiological log record and underflow in index nodes is allowed.

Fig. 5 shows an example of d-IPL Bþ-tree and describes
how an insertion operation is performed. In the figure, it is
assumed that the maximum and minimum fanouts are 4
and 2, respectively, for both internal and leaf nodes. It is
also assumed that a flash memory block can store at most
two nodes and the log area of a block can have up to four
log sectors. The block numbers shown in Fig. 5 are either a
logical block address (LBA) or a physical block address
(PBA). For ease of description, we assume that the effect of
an operation is immediately written to a log area.

When new entries are inserted into a leaf node, they are
written to log sectors as insertion log records. For example,
in Fig. 5, suppose a new index entry with a key value 9 is
inserted into a node D stored in Block 3. Since Block 3 has a
free log sector available in its log area, this insertion is done
just by calling the insertEntry() function. If two more
new index entries with key values 17 and 20 are inserted
into Block 4, two log sectors are appended in the log area of
Block 4, as shown in the same figure.

When a target node for an insertion is already full, the
target node will be split. Following the block-level require-
ment (B.d) given in Section 3.1, the new node split from the
target node is created in the same block as the target node.
Fig. 6 shows an insertion of an entry with key value 21 that
results in a node split. To split the node E, a new ghost
node I is created. Then, half of the entries are removed from

node E and moved to node I. At the same time, two log
records are produced—one for the remove from node E
and the other for the insert into node I—and appended to
the log sectors of corresponding nodes in the block. (See the
two last log sectors in Block 4 of Fig. 6.) In this example, the
log record for the new node I is written to the log area, but
not in the data area of Block 4, because the node I will
remain as a ghost node until it is embodied.

If the block containing a target node has no space
available for a new split node, then the node split operation
described above must be preceded by a block split
operation, which will be presented in the following section.

4.2 Block Split

A block split is triggered by a node split operation as
discussed above, when the block containing a node to split
is already full. Suppose, for example, in Fig. 6 node D in
Block 3 is about to split and Block 3 is already full. Then,
Block 3 must be split before node D is split. Fig. 7 shows the
part of a resulting tree after a new Block 9 is split from the
block 3.

The algorithmic description of a block split operation is
given in Fig. 8. The d-IPL Bþ-tree index allocates two free
blocks, one for the new version of the old block and the
other for the new block being split out. Then, it computes
the new version of each node in the old block by applying
the relevant log records to the old node, writes the first
d nodes in the new version of old block and the remaining

1236 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012

Fig. 4. Algorithm 1: Insertion

Fig. 5. Insertion of an entry.

Fig. 6. Node split by an insertion.

Fig. 7. Block split by a node split.

ðdþ 1Þ nodes in the new block. After copying all the nodes
in the old block, the old block is erased and freed.

4.3 Block Cleansing

Following the trait of the IPL scheme, when a flash block
runs out of its log sectors, all the log records stored in the
block are applied to the corresponding index nodes, so that
all current nodes are relocated to a new flash block with an
empty log area. This new block with the current nodes and
an empty log area will then be ready for further operations.
We call this operation a block cleansing.

As is shown in Fig. 6, the ghost node I, which was created
by a node split operation in the previous example, has a free
slot to store a new entry with key value 23. However, Block 4
has already run out of free log sectors in its log area. Thus,
Block 4 should be cleansed to make its log area available
again for further operations. Fig. 10 shows the part of a
resulting tree after a block cleansing operation is carried out.
Node I, which used to be a ghost node before the block
cleansing, is embodied to a regular node, and the log area of
the block stores only a single log record for the insertion of
key value 23 just flushed from the in-memory log sector.

The algorithmic description of a block cleansing opera-
tion is given in Fig. 9. The block cleansing algorithm
allocates a new free block, computes the new versions of
index nodes stored in the block by applying the corre-
sponding log records, writes the new versions into the free
block, and then finally erases and frees the old block.

4.4 Deletion of an Entry

Just as an insertion operation can cause a node to be split, a
deletion operation can cause nodes to be merged. While

merging nodes is necessary to guarantee the minimum
occupancy of 50 percent for index nodes, it is not always
desired in practice to merge index nodes, because merging
index nodes frequently may lead to serious degradation in
performance [10, Chap. 15]. Most commercial database
systems (e.g., Oracle [11, Chap. 8], Sybase [12]) allow
underflow in index nodes to happen so that performance
penalty caused by frequent node merge operations can be
avoided. Furthermore, such frequent structural changes by
merging nodes might exacerbate the problem of frequent
log overflow for the IPL Bþ-tree indexes.

Taking this factor into consideration, the d-IPL Bþ-tree
index allows underflow to occur in index nodes and does
not support node merge operations explicitly. Conse-
quently, a deletion operation can be carried out easily by
leaving a log record in the log area. When a node becomes
empty by repeated deletions, it will be released and
returned to a free node list by a block cleansing operation.

For the same reason, the d-IPL Bþ-tree index allows
underflow to occur in flash memory blocks by letting them
occupied by regular index nodes less than 50 percent. In a
rare case where a block becomes empty, the block will be
released and returned to a free block list.

5 SEARCH

Fundamentally, the search algorithm of d-IPL Bþ-tree
works the same way as a conventional Bþ-tree index. It
starts from the root node and traverses down the index tree
to find a target leaf node. Unlike a conventional Bþ-tree
index, however, on a page fault, the current version of an
index node has to be brought into a buffer frame from flash
memory. Due to the IPL update logic, the current version of
the node may have to be computed on the fly by applying
its relevant log records to the version stored in the data area
of a flash block. Under the dynamic IPL scheme, the log
area can be as large as the half of a flash block. In order not
to degrade the read performance of d-IPL Bþ-tree, it is
crucial to minimize the number of log sectors required to
perform a read request for an index node. Therefore, in this
section, we focus on the minimization of the read cost.

5.1 Layout of a Log Sector

The key to minimizing the overhead of a read operation is
to fetch only the log sectors relevant to an index node

NA ET AL.: DYNAMIC IN-PAGE LOGGING FOR Bþ-TREE INDEX 1237

Fig. 8. Algorithm 2: block split.

Fig. 9. Algorithm 3: block cleansing.

Fig. 10. Block cleansing.

being requested, rather than scanning the entire log area.
In order to make such selective fetches possible, we
propose an elaborate design for the layout of a log sector
as shown in Fig. 11.

In addition to log records and other metadata such as a
log sector identifier and the offset of a relevant node, each
log sector maintains two data structures: last log sector
directory (LLSD) and log sector link map (LSLM). The LLSD
keeps track of the most recent log sector for every tree node
stored in the block, and the LSLM connects the log sectors
belonging to the current tree node together.

When an tree node is to be read from the flash block, the
current version of the node has to be computed by applying
its relevant log records, which may be stored in one or more
log sectors in the block. In order to compute the current
version of the node without scanning the entire log area,
only the log sectors relevant to the node should be chased
backward from the last log sector in the log area. The LLSD
records the identifier of the most recent log sector
associated with every node stored in a flash block, so that
the last log sector of any node in the block can be found in
the directory stored in the log sector most recently written
to the block.

Starting from the last log sector in a block, the log
sectors relevant to a particular index node can be chased
selectively via the LSLM stored in each log sector. The
LSLM is a bitmap that encodes the information about
which log sectors among all the previous ones are related
to a particular tree node. For example, if there are five log
sectors ahead of the current log sector, and only the first
and the third log sectors are associated with a target tree
node, then the LSLM can be encoded as 10100. Therefore,
once the latest log sector is found for a target tree node, all
the relevant log sectors can be found by accessing the
LSLM field of the latest log sector without scanning the
entire log area.

5.2 Fetching a Ghost Node

A ghost node is yet another type of nodes stored in a
d-IPL Bþ-tree index. The search algorithm should be able to
reconstruct a regular node from a ghost node. When an
index node is to be fetched, the first step to be taken by the
search algorithm is to determine whether the requested
index node is a regular node or a ghost node. If the offset of
the node falls within the log area of the block, then the

requested node is a ghost. Otherwise, the requested node is
a regular one.

The procedure for fetching the current version of a ghost
node is quite different from the one for a regular node
described in the previous section. Since a ghost node is
created only from a node splitting operation, the first log
record for the ghost node must be a physiological log that
denotes copying half of the entries from the old node of which
the ghost node was split from. (The information about the old
node is encoded in the first log sector of the ghost node.) This
implies that, in order to compute the current version of a
ghost node, the old node of which the ghost node was split
from must also be fetched from the flash block. Furthermore,
the version of the old node must be current as of the time
when the ghost node was about to be split from the old node.

While the overhead of computing the current version of a
regular node is proportional to the number of log sectors
associated with the node, computing the current version of a
ghost node incurs additional overhead for computing the
particular version of the old node the ghost node was split
from. Due to this extra overhead, the overall search
performance of a d-IPL Bþ-tree index may deteriorate at
the presence of a large number of ghost nodes. Furthermore,
if a node being split is already a ghost, the node that will be
created from the split will be another ghost node, and thus
the read overhead for the new ghost node would be higher.
However, this would happen very rarely because it is highly
probable, as will be demonstrated in Section 6.2.3, that the
block containing a ghost node will be cleansed before the
ghost node itself is split. Furthermore, even the rare scenario
can be prevented by eagerly cleansing blocks so that ghost
nodes are transformed to regular ones before the ghost nodes
have to be split again.

5.3 Read Optimization by Block Cleansing

A block cleansing operation, presented in Section 4.3, is
invoked when a target flash memory block runs out of its
log sectors. The objective of a block cleansing operation is to
relocate the index nodes, either regular or ghost, stored in a
block along with their log records to a new flash memory
block, such that all the index nodes in the new block are
regular and current, and the log area in the block becomes
empty (by applying all the log records to their correspond-
ing nodes).

Once a block is cleansed, there remains no log record in
the block and any request to fetch a node from the block can
be processed quickly with no additional overhead of
accessing log records. To optimize the read performance
of a d-IPL Bþ-tree index, it may be beneficial to apply the
block cleansing operation globally to all the blocks belong-
ing to the index. This global block cleansing can be done at a
regular interval, as a background process, or when the
workload changes from write-intensive to read-intensive.
As will be seen in Section 6, the cost of a global block
cleansing was insignificant and would be amortized quickly
with a read-intensive workload.

6 PERFORMANCE EVALUATION

This section presents the results of performance evaluation
for d-IPL Bþ-tree. In the first set of experiments, presented

1238 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012

Fig. 11. Layout of a log sector.

in Section 6.2, we compare d-IPL Bþ-tree with IPL Bþ-tree
with respect to their performance of insertion, deletion, and
search operations, and evaluate how effectively d-IPL
Bþ-tree deals with frequent log overflow and page evapora-
tion problems without increasing the amount of reads
excessively. In the second set of experiments, presented in
Section 6.3, we compare d-IPL Bþ-tree with an existing
flash-aware Bþ-tree index based on FTL, and demonstrate
the limitations of FTL-based approaches such as FTL
dependency and low space utilization.

6.1 Experimental Settings

Among the three basic operations for flash memory,
namely, page read, page write and block erase, the
processing time of a block erase operation is the longest
and followed by that of a write and that of a read operation.
The actual amount of latencies for the three operations can
vary depending on the types and manufacturers of flash
memory, and so are their relative ratios in latencies. In this
paper, we used the frequency of the three basic operations
rather than elapsed time as the performance metrics. This
will help us understand the performance characteristics of
different indexing methods without being interfered by
such factors as caching, data bus bandwidth and channels
of an actual flash memory storage device.

For the first set of experiments, we implemented IPL Bþ-
tree and d-IPL Bþ-tree on top of a NAND flash simulator
on a Linux platform. The NAND flash simulator was used
to simulate a flash storage device, and supported 2 KB
pages and 128 KB blocks. For the second set of experiments,
we implemented BFTL using an FTL simulator on the same
Linux platform. The FTL simulator supported a few
commonly used FTLs such as FAST [13], FMAX [14], and
a page-level FTL [15].

In order to obtain realistic workloads for BFTL, we built a
BFTL index on a hard disk drive, and collected I/O traces
from logical sector numbers (LSNs) at the device driver level
using a block tracing tool [16]. Although the traces were
obtained from a disk drive, they are identical to what would
be obtained from a flash drive, because logical addresses
were taken instead of physical addresses. The numbers of
read, write, and erase operations were measured while the
traces were fed into the FTL simulator.

The size of a Bþ-tree node was set to 8 KB in all the
experiments except for those evaluating the effects of
different node sizes. When the size of a node was 8 KB,

the maximum fanout was 840 for internal nodes and 510 for
leaf nodes. The index keys were unique integers between 1
and 1,000,000.

6.2 IPL Bþ-tree versus d-IPL Bþ-treed-IPL Bþ-tree

The first set of experiments was carried out to evaluate the
performance of d-IPL Bþ-tree and IPL Bþ-tree with respect
to insertion, deletion, and search operations. The objectives
of the experiments were to observe how the problems of
frequent log overflow and page evaporation affect the
performance of insertions and deletions, and how the
overhead from dynamic log areas and ghost nodes affect
the performance of search operations.

6.2.1 Insertion

For the insertion test, we inserted one million index entries
into each of the d-IPL Bþ-tree and IPL Bþ-tree indexes in
random order. For each Bþ-tree index, we repeated the
same test with a varying number of buffer frames in RAM
from 100 to 500 by increasing it by 100 frames at a time. The
height of the tree indexes was three when the insertion was
complete.

As described in Section 4, an insertion operation for a
d-IPL Bþ-tree might involve read/write/erase operations
in flash memory. In order to find the target node for an entry
insertion, we need to traverse down the d-IPL Bþ-tree from
the root to the leaf node, and during the traversal, several
regular nodes and their relevant log pages should be
brought into memory from flash memory. For an insertion
to complete, we need to flush (i.e., write) the log records in
the log area. In some cases, we need to cleanse old blocks
and/or split blocks, which involves additional read/write/
erase operations.

Fig. 12 shows the number of pages to be read and
written, and the number of blocks to be erased, when a
million index entries are randomly inserted. Detailed
analysis of empirical evaluation will be given in the
following.

First, as shown in Figs. 12a and 12b, the performance
gain obtained by d-IPL Bþ-tree over IPL Bþ-tree for write
and erase operations was significant. The d-IPL Bþ-tree
index outperformed the IPL Bþ-tree by more than a factor
of two. This clearly demonstrates how critical the problems
of frequent log overflow and the page evaporation are for
performance, and shows that the dynamic in-page logging
scheme is a very effective solution to the problems.

NA ET AL.: DYNAMIC IN-PAGE LOGGING FOR Bþ-TREE INDEX 1239

Fig. 12. Performance of random insertions. (a) Number of write operations. (b) Number of erase operations. (c) Number of read operations.

Second, the performance gain is attributed to the fact that
number of block cleansing operations is significantly
reduced by d-IPL Bþ-tree, which in turn reduces the
number of read operations as well. The cost of reading a
tree node from a d-IPL Bþ-tree tree was expected higher
because of the additional cost of computing the current
versions of tree nodes. However, as is shown in Fig. 12c, the
total number of page reads by d-IPL Bþ-tree was even
slightly less than that by IPL Bþ-tree due to the reduced
number of block cleansing operations.

Third, the performance of both d-IPL Bþ-tree and IPL
Bþ-tree improved consistently as the number of buffer
frames increased. This demonstrate that both indexes based
on the in-page logging scheme are free from anomalies
related to buffer management.

Table 1 compares IPL Bþ-tree and d-IPL Bþ-tree with
respect to the number of node split, block split, and block
cleansing operations. d-IPL Bþ-tree required node split
operations slightly more than IPL Bþ-tree, and some of the
node split operations caused block split operations. Since
IPL Bþ-tree need not perform block split operations, having
to perform block split operations is clearly a disadvantage
of d-IPL Bþ-tree because block split is a costly operation.
However, the node split operations incurred block split
operations only at about 10 percent ratio. More importantly,
d-IPL Bþ-tree reduced the number of block cleansing
operations by more than 75 percent.

Write Amplification Factor. Recently, the flash memory
controller industry introduced the terminology write ampli-

fication [17] as a metric to represent the efficiency of FTL
schemes in terms of page writes. It is commonly defined as

physical writes=logical writes

where the logical writes is the number of page writes
requested by the host and the physical writes is the number
of page writes actually carried out by a storage subsystem.

On the other hand, unlike the FTL approaches where
any change of a page would result in a physical write into
flash memory, the IPL-based approaches capture the
change and result in a physical write in a smaller unit—a
log sector instead of a large page. For this reason, we
redefine the write amplification WAIPL for the IPL-based
approaches, as follows:

WAIPL ¼ ðCp �BpÞ=ðCn �BnÞ: ð1Þ

Here, Cp is the number of pages written to flash memory,
Cn is the number of node writes requested, Bp is the size of
a page, and Bn is the size of a node. Note that the IPL
scheme, with this definition, can achieve the write
amplification less than one, which implies that the IPL can
actually reduce the absolute amount of writes.

Table 2 compares the write amplification factors
between the two IPL-based approaches. The IPL Bþ-tree
index has the write amplification of 0:69 � 1:09. Such low
write amplification is not surprising because the IPL
scheme minimizes the amount of physical writes by storing
the physiological difference between the old and new
versions of a page instead of writing the new page itself.
The d-IPL Bþ-tree improves the write amplification even
further to the range of 0:26 � 0:49 by addressing the
problems of frequent log overflow and page evaporation
that cause many unnecessary write operations. In sum-
mary, even for small and random writes, the d-IPL Bþ-tree
index can achieve the write amplification twice lower than
the theoretical optimum one could achieve without in-page
logging.

6.2.2 Deletion

For a deletion test, we used workloads mixed with
insertions and deletions of index entries for both
d-IPL Bþ-tree and IPL Bþ-tree indexes. The number of
insertions was a million in each workload, and the number
of deletions was varied such that the ratio of insertion to
deletion was 5:5, 7:3, and 9:1.

Table 3 summaries the deletion test results and
compares d-IPL Bþ-tree and IPL Bþ-tree indexes with
respect to the number of required read, write and erase
operations as well as the sizes of the indexes resulted
from the insertions and deletions. Except for the last
column (denoted by Size), the table shows the number of
pages read and written and the number of blocks erased
during the insertions and deletions for d-IPL Bþ-tree and
IPL Bþ-tree indexes. The d-IPL Bþ-tree index evidently
outperformed the IPL Bþ-tree index in all three measure-
ments with a wide margin.

On the other hand, the size of a d-IPL Bþ-tree index was
35 to 45 percent larger than that of a IPL Bþ-tree index
(except for the case of 5:5 ratio where the entire set of index
entries were deleted). The last column of the table shows
the size of a d-IPL Bþ-tree index or an IPL Bþ-tree index in
blocks resulted from the insertions and deletions. This is
because d-IPL Bþ-tree does not support operations for

1240 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012

TABLE 1
Node Split Number, Block Split Number and Block

Cleansing Number (Buffer Frames : 500)

TABLE 2
Write Amplification Factor of Bþ-tree Indexes

TABLE 3
Number of Operation under Different Ratios of Insertions/

Deletions (Insertion:Deletion)

merging tree nodes nor merging flash memory blocks, as
described in Section 4.4. In other words, d-IPL Bþ-tree

traded space utilization for processing speed.

6.2.3 Search

For a page read operation, like IPL Bþ-tree, d-IPL Bþ-tree
needs to access log data in addition to a data page itself in
order to compute the current version of the page. In this
section, we empirically demonstrate that the read overhead
by d-IPL Bþ-tree is small enough to be justified by the
gain in its random write performance. Moreover, because
of the asymmetry in the read and write speed of flash
memory, the gain in random write performance not only
makes up for the read overhead but also improves the
overall performance of the d-IPL Bþ-tree index.

Fig. 13 shows the number of pages to be read when a
million keys were searched in random order against the two
indexes built in Section 6.2.1. The plots annotated by (R) are
the search results from the versions of d-IPL Bþ-tree and
IPL Bþ-tree indexes obtained by applying the read optimi-
zation presented in Section 5.3. For the read optimized
indexes, the block cleansing operation was carried out for
each of the flash memory blocks that stored the indexes
resulted from a million key insertions, so that an index
search does not have to access log area of the read optimized
indexes. Consequently, the plots of the read optimized
d-IPL Bþ-tree and IPL Bþ-tree indexes overlap completely.

When the read optimization was not applied, a search
operation by IPL Bþ-tree required reading log data as much
as 4 KB on average, which amounted to about 50 percent
additional reads compared with a read optimized IPL Bþ-
tree index. In the case of d-IPL Bþ-tree, the log area can be
as large as 64 KB, and a search operation by d-IPL Bþ-tree
could have required reading log data as much as 32 KB on
average, which is eight times that of IPL Bþ-tree. Besides,
reading a ghost node would have increased the amount of
additional page reads even further. As is shown in Fig. 13,
however, the amount of additional reads incurred by
d-IPL Bþ-tree was just about twice that incurred by IPL
Bþ-tree. This is because d-IPL Bþ-tree reduced the amount
of reads effectively by utilizing the LLSD and LSLM of its
log sectors.

Another thing to note is that the amount of read
overhead would increase if reading was done for a ghost
node that had been split again before being embodied to a
regular node. In our tests, however, as is shown in Table 4,
the number of ghost nodes recursively split was zero. This
implies that it is very improbable that a ghost node is split
again before it becomes a regular node by a block cleaning
operation, and the performance impact of recursively split
ghost nodes is expected to be negligible.

6.2.4 Node Size

The size of an index node is one of the key factors that
determine the performance of a Bþ-tree index. In general,
the use of a large index node keeps the Bþ-tree index
shallow but increases the I/O cost for accessing individual
index nodes. Most contemporary flash memory devices use
a smaller unit for I/O, typically 2 KB pages, than the I/O
cluster chosen by most disk-based database systems,
typically 8 KB or larger. In order to evaluate the impact of
index node sizes on the performance of a d-IPL Bþ-tree
index, we repeated the same insertion test with different
node sizes: 2, 4, and 8 KB. The results are summarized in
Table 5. In each case, the size of a buffer pool was set
equally to 800 KB, and a total of 500,000 unique keys were
inserted randomly.

As is shown clearly in Table 5, the number of index
nodes read or written remained largely unaffected by
different node sizes, because the height of the indexes was
the same in all three cases. On the other hand, the number
of index nodes split decreased as much as the size of an
index node (or the number of entries per node) increased.

The amount of physical reads (or the number of 2 KB
flash memory pages read) increased as the size of index
nodes grew. This is because reading an index node required

NA ET AL.: DYNAMIC IN-PAGE LOGGING FOR Bþ-TREE INDEX 1241

Fig. 13. Performance of random selections.

TABLE 4
Measurement of Ghost Nodes (After Random

Insertion, buffer ¼ 500)

TABLE 5
Impact of Node Sizes on d-IPL Bþ-tree

accessing all flash memory pages belonging to the index
node. On the other hand, the amount of physical writes (or
the number of 2 KB flash memory pages written) was
independent of the size of index nodes, because writing an
index node was done by writing a few log records instead
of writing the entire index node. Block level operations such
as block split, block cleansing, and block erasure were
relatively insensitive to the size of index nodes, because the
size of a flash memory block was constant regardless of the
difference in node sizes.

In summary, as long as the height of a d-IPL Bþ-tree index

remained the same, the amount of physical reads was the

dominant factor of its performance, and the best performance

was attained by fitting an index node in a 2 KB page, which is

the basic I/O unit for flash memory devices. Now that we

demonstrated the superior performance of d-IPL Bþ-tree

using index nodes of 8 KB each (a default node size

commonly adopted by commercial database systems)

throughout the experiments presented in this section, we

conjecture that the performance of d-IPL Bþ-tree would

have been even better if index nodes of 2 KB had been used.

6.3 BFTL versus d-IPL Bþ-treed-IPL Bþ-tree

As explained before, several flash-aware Bþ-tree index

structures have been recently developed to better utilize

flash memory, including BFTL [3], FlashDB [4], and FD-tree

[5]. They commonly assume that an underlying flash device

is equipped with an FTL, and try to turn random IO

operations into sequential ones using an organization

similar to the log-structured file system [7]. However, this

general approach requires a nontrivial amount of extra

memory to cache random write requests and flush them in

serialized patterns. Since BFTL is one of the first and well-

known methods based on this approach, we compare the

performance d-IPL Bþ-tree and BFTL, and show some of

the limitations of BFTL.
To measure the insertion performance, we configured the

indexes the same way as the insertion experiment presented
in Section 6.2.1, and set the number of buffer frames to 100.
For BFTL, we tested FMAX [14], FAST [13], and a page-level
mapping algorithm [15] as its underlying FTL. Although
BFTL required a larger RAM space than d-IPL Bþ-tree, we
excluded the memory requirements in performance com-
parison and just compared the IO performance, so that the
resource allocation was not unfavorable to BFTL.

Most contemporary flash memory SSDs come with an
over-provisioned capacity to hide write latency of flash
memory by utilizing the extra flash blocks internally. The
overall performance of SSDs could be sensitive to the
amount of over-provisioned capacity. For each underlying

FTL chosen for BFTL, we set the over-provisioned capacity

to 30 percent of the total capacity following the current

industry trend [18], [19].
The results from the insertion experiments are summar-

ized in Table 6. A few important observations can be made

from the table. First, when FMAX was used for BFTL, BFTL

was outperformed by d-IPL Bþ-tree in all aspects of

operations and measurements. When FAST or a page-level

mapping FTL was used for BFTL, BFTL was superior to

d-IPL Bþ-tree with respect to the number of write and

erase operations. This was mostly due to the compaction

tuning parameter set to the optimal value suggested by the

BFTL work [3]. However, its total elapsed time was still

longer than that of d-IPL Bþ-tree, because of the excessive

read operations required by BFTL.
Second, the performance of BFTL, with respect to the

number of read, write, and erase operations and the total

elapsed time, varies significantly depending on the FTL

chosen by BFTL. Such a strong FTL dependency would

make the performance of BFTL unpredictable without

knowing the internal workings of a chosen FTL.
Third, the size of a Bþ-tree index created by BFTL was

larger than the size of a Bþ-tree index created by

d-IPL Bþ-tree by a factor of five in terms of flash memory

blocks used. The low space utilization of BFTL was caused

by its node management and compaction that do not

necessarily separate valid log records from invalid ones,

which does not allow garbage collection to work effectively.

In fact, no garbage collection mechanism has been sug-

gested by the BFTL work [3].

7 CONCLUSION

The hierarchical structure of Bþ-tree indexes makes it

difficult for the basic in-page logging scheme to deal with

insertions and deletions using a few physiological log

records. As is shown in the experiments, the IPL Bþ-tree

index suffers from excessive block cleansing operations

caused by the frequent log overflow and page evaporation

problems.
To address this concern, we propose d-IPL Bþ-tree

tailored for flash-aware Bþ-tree indexes. We have empiri-

cally shown that the d-IPL Bþ-tree index improves the

utilization of flash memory blocks significantly by allocat-

ing a log area within each flash memory block dynamically.

It also minimizes log overflows and keeps the write

amplification factor low (often far lower than one) by

introducing ghost nodes and by reducing the number of log

records required for a node splitting operation.

1242 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012

TABLE 6
Insertion Performance: BFTL versus d-IPL Bþ-tree

ACKNOWLEDGMENTS

This research was partly supported by MKE, Korea under
ITRC NIPA-2010-(C1090-1021-0008), MEST, Korea under
Basic Science Research Program through NRF (No.2010-
0025649), and MEST, Korea under NRF Grant (No.2010-
0026511). This work was also sponsored in part by the US
National Science Foundation Grant IIS-0848503. The authors
assume all responsibility for the contents of the paper.

REFERENCES

[1] S.-W. Lee and B. Moon, “Design of Flash-Based DBMS: An In-
Page Logging Approach,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data (SIGMOD ’07), pp. 55-66, June 2007.

[2] G.-J. Na, B. Moon, and S.-W. Lee, “In-Page Logging B-Tree for
Flash Memory,” Proc. 14th Int’l Conf. Database Systems for Advanced
Applications (DASFAA ’09), pp. 755-758, Apr. 2009.

[3] C.-H. Wu, L.-P. Chang, and T.-W. Kuo, “An Efficient B-Tree Layer
for Flash-Memory Storage Systems,” ACM Trans. Embedded
Computing Systems, vol. 6, no. 3, article 19, 2007.

[4] S. Nath and A. Kansal, “FlashDB: Dynamic Self-Tuning Database
for NAND Flash,” Proc. Sixth Int’l Conf. Information Processing in
Sensor Networks (IPSN ’07), pp. 410-419, Apr. 2007.

[5] Y. Li, B. He, Q. Luo, and K. Yi, “Tree Indexing on Flash Disks,”
Proc. IEEE Int’l Conf. Data Eng. (ICDE ’09), pp. 1303-1306, Mar.
2009.

[6] Intel, “Understanding the Flash Translation Layer (FTL) Specifi-
cation,”Technical Report AP-684, Intel Corporation, Dec. 1998.

[7] M. Rosenblum and J.K. Ousterhout, “The Design and Implemen-
tation of a Log-Structured File System,” Proc. ACM Symp.
Operating System Principles, pp. 1-15, Sept. 1991.

[8] Samsung Electronics, “K9XXG08XXM Flash Memory Specifica-
tion,”technical report, 2007.

[9] Micron, “NAND Flash 101—An Introduction to NAND Flash and
How to Design It In to Your Next Product,” Technical Report TN-
29-19, Apr. 2010.

[10] J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques. The Morgan Kaufmann Series in Data Management
Systems, Morgan Kaufmann, 1993.

[11] S. Dillon, C. Beck, T. Kyte, J. Kallman, and H. Rogers, Beginning
Oracle Programming. Wrox Press, 2003.

[12] N. Ponnekanti and H. Kodavalla, “Online Index Rebuild,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD), pp. 529-
538, June 2000.

[13] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J.
Song, “A Log Buffer Based Flash Translation Layer Using Fully
Associative Sector Translation,” ACM Trans. Embedded Computing
Systems, vol. 6, no. 3, article 18, 2007.

[14] A. Ban and R. Hasharon, “Flash File System Optimized for Page-
Mode Flash Technologies,” U.S. Patent 5937425, Washington D.C.,
Aug. 1999.

[15] A. Birrell, M. Isard, C. Thacker, and T. Wobber, “A Design for
High-Performance Flash Disks,” ACM SIGOPS Operating Systems
Rev., vol. 41, no. 2, pp. 88-93, Apr. 2007.

[16] J. Axboe and A.D. Brunelle, “Blktrace User Guide,” http://
kernel.org/pub/linux/kernel/people/axboe/blktrace/, Feb.
2007.

[17] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
Amplification Analysis in Flash-Based Solid State Drives,” Proc.
SYSTOR Israeli Experimental Systems Conf. (SYSTOR ’09), pp. 1-9,
May 2009.

[18] G. Drossel, “Methodologies for Calculating SSD Useable Life,”
Proc. Storage Developer Conf., Sept. 2009.

[19] H. Mehling, “Solid State Drives Take Out the Garbage,” http://
www.enterprisestorageforum.com/technology/features/article.
php/3850436/Solid-State-Drives-Take-Out-the-Garbage.htm, Dec.
2009.

Gap-Joo Na received the PhD degree in
computer engineering from Sungkyunkwan Uni-
versity, Korea, in 2011. His research interest is
in flash-based database technology, flash file
system, and embedded systems. Currently, he
is a senior member of engineer staff at Electro-
nics and Telecommunications Research Insti-
tute (ETRI), Korea.

Sang-Won Lee received the PhD degree from
the Computer Science Department of Seoul
National University in 1999. He is an associate
professor with the School of Information and
Communication Engineering at Sungkyunkwan
University, Suwon, Korea. Before that, he was a
research professor at Ewha Women University
and a technical staff at Oracle, Korea. His
research interest include flash-based database
technology.

Bongki Moon received the MS and BS degrees
in computer engineering from Seoul National
University, Korea, in 1985 and 1983, and the
PhD degree in computer science from University
of Maryland, College Park in 1996. He is a
professor of computer science at the University
of Arizona, where he has been a faculty member
since July 1997. His research interests include
flash memory database systems, XML indexing
and query processing, and information stream-

ing and dissemination. He has served on program committees for
numerous conferences and workshops as well as editorial boards and
review panels for academic journals and the US National Science
Foundation. He received an NSF CAREER Award in 1999 for his work
on distributed cooperative web server design. He was on the research
staff for Samsung Electronics and Samsung Advanced Institute of
Technology, Korea, from 1985 to 1990.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

NA ET AL.: DYNAMIC IN-PAGE LOGGING FOR Bþ-TREE INDEX 1243

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

