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Scalability Analysis of Declustering Methods
for Multidimensional Range Queries

Bongki Moon and Joel H. Saltz, Member, IEEE

Abstract—Efficient storage and retrieval of multiattribute data sets has become one of the essential requirements for many
data-intensive applications. The Cartesian product file has been known as an effective multiattribute file structure for partial-match
and best-match queries. Several heuristic methods have been developed to decluster Cartesian product files across multiple
disks to obtain high performance for disk accesses. Although the scalability of the declustering methods becomes increasingly
important for systems equipped with a large number of disks, no analytic studies have been done so far. In this paper, we derive
formulas describing the scalability of two popular declustering methods¦Disk Modulo and Fieldwise Xor¦for range queries, which
are the most common type of queries. These formulas disclose the limited scalability of the declustering methods, and this is
corroborated by extensive simulation experiments. From the practical point of view, the formulas given in this paper provide a
simple measure that can be used to predict the response time of a given range query and to guide the selection of a declustering
method under various conditions.

Index Terms—Multiattribute access methods, range query, file declustering, scalability, Disk Modulo, Fieldwise Xor, Hilbert
curve-allocation method.

——————————   ✦   ——————————

1 INTRODUCTION

VARIETY of complex data management requirements have
arisen in many large-scale data-intensive applications,

which often need support for multidimensional objects and
sophisticated access methods. Typical examples are scientific
data [21], [45], cartography, and census data [36], the Earth
Observing System (EOS) and remotely sensed image [7], and
geographic information systems [43]. Frequent operations
on these data sets include volume visualization, transient
detection, computation of trends and compositions, and ac-
cessing spatio-temporal subset of images. For data retrieval,
all of these operations translate to requests for multi-
dimensional subspaces from the data set, that is, to multi-
dimensional range queries. Thus efficient support for these
types of queries is of paramount importance.

During the past few years, much research effort has fo-
cused on developing high-performance database manage-
ment systems. One approach is to build multiprocessor da-
tabase machines, which have become increasingly popular
(for example, Bubba [4], Gamma [12], Teradata [5], [13], Tan-
dem [25], Oracle parallel server [14], DB2 parallel edition [2]). In
such systems, database relations are generally partitioned
horizontally and distributed across multiple processors.
Another approach is to employ disk arrays [6], [22] or par-
allel file systems [10], [28]. In both approaches, the key mo-
tivation is to exploit parallelism (especially in I/O) by dis-
tributing database files across multiple processors and/or
disks aiming at closing the gap between processor and I/O
performance, and thereby minimizing the response time of

queries. The problem of distributing files across multiple
disks is called file declustering.

Most of the research cited above focuses on declustering
database files using the values of a single attribute or a set
of attributes so that disk accesses can be performed effi-
ciently through the partitioning attributes. Under such
schemes, however, queries based on nonpartitioning attrib-
utes would not be processed efficiently because there is no
guarantee that the answer set to such a query is well dis-
tributed across disks. Several heuristic methods have been
developed to decluster a Cartesian product file [34], which
has been known as a multiattribute file structure effective
for partial-match and best-match queries [42]. There are a
few well-known multidimensional declustering methods
for Cartesian product files:

•� Disk Modulo (DM) [15],
•� Fieldwise Xor (FX) [31],
•� Error Correcting Codes (ECC) [18],
•� Hilbert Curve-Allocation Method (HCAM) [17], and
•� Vector-based declustering method [8].

Although ample analytic studies have been done for
partial match queries [1], [15], [31], [46], relatively little at-
tention has been given to range queries [32], [33]. To the
best of the knowledge of the authors, no analytic results
have been provided so far for the scalability of multidimen-
sional declustering methods with varying number of disks.
The scalability of declustering methods becomes increas-
ingly important as system configurations with large num-
bers of disks become more common.1

1. For example, the IBM SP-2 at the University of Maryland is equipped
with 112 SCSI disks. A 5. 5 terabyte data warehouse was recently reported
to be built on an enterprise server with 540 disks each 9 gigabytes con-
trolled by Veritas Volume Manager. Sybase MPP (previously called Sybase
Navigation Server) has demonstrated scalable performance on the 128-node
IBM SP-2 at the Maui High-Performance Computing Center.
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In this paper, we present the scalability analysis of some
existing declustering methods using the response time of
hypercubic range queries as a metric to make the analysis
tractable. In the performance model, we do not include the
computational cost for mapping range values into data
block addresses, because it is negligible compared with the
cost of accessing disk blocks. Our work includes the first
analysis of the Fieldwise Xor method for hypercubic range
queries. Specifically,

1)�Analytic formulas are derived to disclose the limited
scalability of Disk Modulo and Fieldwise Xor de-
clustering methods. We shall show that as the number
of disks increases beyond a certain threshold, the re-
sponse time either no longer improves or improves by
far less than ideal.

2)�Optimal conditions for Disk Modulo and Fieldwise
Xor methods are described.

3)�Other declustering methods (for example, HCAM, and
Vector-based) are compared to show that declustering
methods may have disparate performance behavior
under various conditions.

The analytic results are corroborated by simulation experi-
ments. For nonhypercubic range queries, however, the be-
haviors of the declustering methods are drifted from the
formulas depending on the shapes of queries. This is also
demonstrated by simulation experiments.

The analytic results presented in this paper could be
used to predict the performance of the declustering meth-
ods when they are applied to more general multidimen-
sional data structures. In [37], we have evaluated tech-
niques which allow the declustering methods developed for
Cartesian product files to be used to decluster grid files
[39], which can handle nonuniformly distributed data sets
in a more space-efficient manner.

The rest of the paper is organized as follows. Section 2
defines terminology for Cartesian product files and types
of queries of our interest, and also surveys previous
work. Section 3 derives the formulas of scalability and
some optimal conditions of Disk Modulo method. Section 4
presents some optimal conditions for Fieldwise Xor method
and derives a simple formula describing its scalability. In
Section 5, we present experimental results to demonstrate
the correctness of the analytic formulas given in this paper
and their applicability to more general cases. Finally, in
Section 6, we discuss the contributions of this paper and
suggest future work.

2 BACKGROUND AND SURVEY

In this section, we define the terminology for Cartesian
product files and types of queries of our interest.
For the purpose of analysis, we also define query re-
sponse time and strict optimality. The symbols com-
monly used in this paper are summarized in Table 1. We
then survey declustering methods that have been reported
in the literature.

2.1 Cartesian Product Files and Range Queries
A d-attribute file is a set of records, where each record r is an
ordered d-tuple (r1, r2, ¤, rd) of values. (Most of the defini-
tions in this section are similar to those in [15]. ) Let Di de-
note the domain of the ith attribute. Thus a d-attribute file is
a subset of D1 � D2 � ¤ � Dd. In order to store a file on disk,
the records are partitioned into buckets (or pages) contain-
ing mutually disjoint sets of records. A file F is called a Car-
tesian product file if it satisfies the following definition:

DEFINITION 1. Let Di be partitioned into mi disjoint subsets Di1,

Di2, ¤, Dimi
. A d-attribute file F is a Cartesian product file

if all the records in D j1 1
 � D j2 2

 � ¤ � Ddjd
 are stored in a

single bucket, where each Diji
 is one of the subsets Di1, Di2,

¤, Dimi
. The bucket b µ D j1 1

 � D j2 2
 � ¤ � Ddjd

 is de-

noted by [j1, j2, ¤, jd].

As an example, let D1 = D2 = {a, b, c, d}, D11 = D21 = {a, b}
and D12 = D22 = {c, d}. Then the following is a Cartesian
product file:

Bucket[1, 1] = D11 � D21 = {(a, a), (a, b), (b, a), (b, b)}
Bucket[1, 2] = D11 � D22 = {(a, c), (a, d), (b, c), (b, d)}
Bucket[2, 1] = D12 � D21 = {(c, a), (c, b), (d, a), (d, b)}
Bucket[2, 2] = D12 � D22 = {(c, c), (c, d), (d, c), (d, d)}

A range query q is a d-tuple <I1, I2, ¤, Id>, where Ii

is an interval [li, ui] µ Di. The answer set of the query
q is {(a1, ¤, ad) | l1 � a1 � u1 Á L Á ld � ad � ud}. Given
a range query, the buckets containing records qualified
by the query are retrieved from disks and are searched for
the records. Since we are more concerned about the number
of disk buckets accessed rather than the number of quali-
fied records, in this paper we only consider the problem of
retrieving the buckets from multiple disks. We therefore
define the size of a query and then define the query
response time using the number of buckets fetched from in-
dividual disks.

DEFINITION 2. The size of a d-attribute (or d-dimensional)
range query is defined by its d side lengths one for each at-

tribute. For a given query q = <I1, I2, ¤, Id>, the ith side

length si is the number of subsets Dijk
’s overlapped by the

interval Ii. That is, si = |{Dijk
µ Di | Dijk

> Ii ¡ 0/}|. The

number of buckets to be fetched by the query q is given

TABLE  1
DEFINITION OF SYMBOLS

Symbol Definition
d Dimensionality of a given Cartesian product file
M Number of available disks
s Side length of a given hypercubic range query

[i1, . . . , id] A bucket of a d-dimensional Cartesian product file

Rf (s, M) Response time of an M-disk declustering method
f  for a hypercubic query of side length s

x[i] The i th least significant bit of an integer x
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by s1 � s2 � L � sd. The query q is called hypercubic if

s1 = s2 = L = sd.

In the above example, if a query q is <[a, b], [b, c]>,
then s1 = 1 and s2 = 2, and two buckets Bucket[1, 1] and
Bucket[1, 2] are fetched by the query.

DEFINITION 3. The response time of a query q is defined as

maxi
M
=1{Ni(q)}, where M is the number of disks used and

Ni(q) is the number of buckets fetched from disk i to answer

the query q. Let Rf(s, M) denote the response time of an

M-disk declustering method f for a hypercubic range query
of side length s.

Since the disks are assumed to be independently accessi-
ble, this definition implies that the time required to respond

to the query q is maxi
M
=1{Ni(q)} units, with each unit being

the time required for one disk seek and/or access to re-
trieve a bucket. For example, in scientific workload such as
matrix multiplications and FFT, where the load is uniformly
distributed, the I/O performance appears to be directly
proportional to the available parallelism [41]. Therefore, we
conjecture that the maximum number of buckets fetched

from the same disk (i.e., maxi
M
=1

 {Ni(q)}) is the best measure
of the actual response time.

Finally, we define the strict optimality of declustering
methods.

DEFINITION 4. An M-disk declustering method is said to be
strictly optimal if for any query q the response time is

N q Mii

M

=∑�  "
##1

( ) / .

Note that this definition does not make any assumptions
about the probability distribution of either queries or data.
Evidently it is not guaranteed that a strictly optimal de-
clustering can be achieved for every Cartesian product file.

2.2 Survey of Declustering Methods
Early prototypes of parallel database systems such as
Gamma [12] and Bubba [4] are based on the shared-nothing
architecture model [44] and employ partitioning strategies
to distribute database relations across multiple processing
nodes. In addition to round-robin, range and hash parti-
tioning [11], Gamma provides a hybrid-range partitioning
scheme. The hybrid-range partitioning [23] is a combination
of fragmentations of relations (sorted on a partitioning at-
tribute) and round-robin partitioning. Bubba also provides
both hash and range partitioning mechanism. One of the
interesting features of Bubba is a partitioning mechanism
based on the heat and temperature of relations. Bubba con-
siders the access frequency (heat) of each tuple when cre-
ating partitions of a relation; the goal is to balance the fre-
quency with which each partition is accessed (temperature)
rather than the actual number of tuples on each disk [9]. In
addition Bubba provides partitioning based on multiple
attributes by declustering inverted indexes of declustered
relations [4].

Staggered striping [3] has been proposed in multimedia
information systems environment. The goal of the stag-
gered striping is to provide continuous (i.e., hiccup-free)
display of multimedia objects. The approach for resolving
the I/O bandwidth limitations is to decluster contiguous
multimedia subobjects (say, Xi and Xi+1) across multiple
disks such that the disk containing the first fragment of Xi+1
is k disks (termed stride) apart from the disk containing the
first fragment of Xi. Under this method, bandwidth frag-
mentation can be relieved with additional memory for
buffer space and additional network capacity.

Ghandeharizadeh et al. have proposed a declustering
method called MAGIC to partition relations based on mul-
tiple attributes [24]. MAGIC partitions relations by con-
structing a grid directory on a relation where each entry in
the grid represents a fragment of the relation. The goal of
MAGIC is to maximize throughput for relatively small que-
ries in multiuse environments. To determine the desired
degree of declustering and the relative frequencies of splits
per each dimension, MAGIC utilizes the frequencies of que-
ries containing individual attributes in the selection predi-
cates and the average resource requirements (i.e., cpu time,
disk accesses, network bandwidth, etc.).

A number of methods have been proposed to decluster
Cartesian product files: Disk Modulo (DM), Fieldwise Xor
(FX), Error Correcting Codes (ECC), Hilbert curve-allocation
method (HCAM), and vector-based declustering method.
These declustering methods exploit the property of Carte-
sian product files that each subspace is stored in a separate
bucket and is uniquely identified by its d-dimensional co-
ordinates. Among these methods, DM, FX, and ECC have
been originally invented for partial-match queries and the
other two for range queries.

It has been shown in [15] that DM is strictly optimal for
many cases of partial-match queries including all partial-
match queries with only one unspecified attribute. Kim and
Pramanik have shown that when both the number of disks
and the size of each field (i.e., domain of an attribute) are a
power of two, the set of partial-match queries which are
optimal for the FX is a superset of that for the DM [31].
They have also investigated the strict optimality of the FX
for range queries [32]. Faloutsos and Metaxas have empiri-
cally shown that ECC outperforms DM and FX for partial-
match queries, but ECC works only for Cartesian product
files of all side lengths power of two [18]. HCAM uses
Hilbert space-filling curve to impose a linear ordering on
the buckets in a Cartesian product file. Then it traverses the
buckets in the order assigning each bucket to a disk unit in
round-robin way. In [17], it has been empirically shown that
HCAM outperforms DM, FX, and ECC for small range que-
ries and large number of disks.

Abdel-Ghaffar and Abbali [1] have provided a coding-
theoretic analysis of declustering Cartesian product files for
partial-match queries. Both necessary and sufficient condi-
tions are provided for the existence of a strictly optimal disk
allocation method. Sung [46] has conducted a performance
analysis of Disk Modulo and derived explicit expressions of
response time for partial-match queries using Fourier trans-
form. It can be easily shown that the closed form of re-
sponse time for range queries can also be derived using the
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same technique.2 Whereas these explicit expressions give
simple and neat proofs for a few theorems related to strict
optimality of DM for partial-match queries, it seldom gives
an intuition as to the efficiency and scalability of Disk
Modulo for either partial-match queries or range queries.

A vector-based declustering method has been proposed
in [8]. This declustering method is particularly suitable for
two-dimensional image and cartographic databases. Que-
ries of interest are fixed-radius circles, and the goal of this
method is to guarantee “one-block-access-per-disk.” For the
given number of available disks, this method generates the
best feasible pair of integer vectors so that the response
time can be minimized by aligning all the buckets with the
vectors. No procedure has yet been developed to generate
such vectors for three or higher dimensional Cartesian
product files. In two-dimensional cases, by their notion of
optimality, the performance of this method is less than 7
percent off from optimum.

Several similarity-based graph-theoretic declustering
methods have been developed. Fang et al. [20] have pro-
posed declustering methods using Minimal Spanning Tree
(MST) and Short Spanning Path (SSP). They have made an
attempt to place similar buckets (i.e., buckets close to each
other) on different disks. An iterative declustering algo-
rithm based on similarity has been proposed by Liu and
Shekhar [35]. They used Kernighan-Lin partitioning algo-
rithm [30] to find an initial partition. We have recently de-
veloped an improved algorithm with the goal being to
minimize both the response time and the data imbalance
among multiple disks [37]. The advantage of the similarity-
based declustering methods is that they can handle more
general data structures such as grid files [39] and R-trees
[26] as well as Cartesian product files and hence are par-
ticularly suitable for nonuniform data sets with hot spots or
correlation between attributes. However, the complexities
of these methods are at least quadratic while all the previ-
ously mentioned methods (i.e., DM, FX, HCAM, etc. ) are
linear. The declustering methods surveyed in this paper are
summarized in Table 2.

TABLE  2
CLASSIFICATION OF DECLUSTERING METHODS

Types Declustering methods
Single-attribute Round-robin, range, hash [11],

hybrid-range [23],
heat/temperature locality [9]

Multiattribute Grid-
based

Disk Modulo [15], Fieldwise Xor
[31], ECC [18], HCAM [17],
Vector-based [8], MAGIC [24]

Graph-
theoretic

MST/SSP [20], Iterative [35],
Minimax [37]

4� SCALABILITY OF DISK MODULO DECLUSTERING

Du and Sobolewski have shown in [15] that the Disk
Modulo (DM) is strictly optimal for a large class of partial
match queries including partial match queries with only

2. By replacing the complex number terms of (1) in [46] with the ones cor-
responding to the subdomains overlapped by a range predicate for each
attribute, the same technique can derive a formula representing all possible
buckets that need to be fetched by a range query and thereby a closed-form
formula of response time.

one unspecified attribute. Li et al. have done extensive per-
formance analysis for arbitrary range queries and con-
cluded that Disk Modulo (or CMD by their own terminol-
ogy) method is nearly optimal for any range query [33]. In
contrast to their conclusion, however, we shall show that
Disk Modulo allocation method has severely limited scal-
ability under certain conditions.

The Disk Modulo (DM) method assigns each bucket
[i1, i2, ¤, id] in a Cartesian product file to the disk unit

(i1, i2, + ¤ + id) mod M

where M is the number of available disks. For example,
consider a stock database stored in a two-dimensional Car-
tesian product file with stock name and stock price as its par-
titioning attributes. Fig. 1 illustrates the Cartesian product
file each of whose two attribute domains are partitioned
into eight intervals, and whose buckets are distributed
across four disks by the Disk Modulo declustering method.
Each bucket is annotated by a disk unit number to which
the bucket is assigned.

Fig. 1. Disk allocation by Disk Modulo declustering method (M = 4).

To get an intuition to the scalability of DM, consider a
square range query given to a two-dimensional Cartesian
product file. The buckets mapped on the diagonal of the
square range query are assigned to the same disk. Thus
the maximum number of buckets read from the same disk
is no less than the number of buckets on the diagonal of
the query, which is equal to the side length of the query.
In the above example of the stock database, if a square
query of side length 3 is given by <[N, T], [21, 43]>,
then three buckets are retrieved from disk unit 0, and
two buckets from each of disk units 1, 2, and 3, which
implies the response time of the query is three. In general,
for d-dimensional Cartesian product files, the following lemma
provides an intuition to the distribution of buckets in the
answer set of a given query across multiple disks.

NOTATION 1. Let C(n, r) denote the number of selections with
repetition of n objects chosen from r types of objects.
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LEMMA 3.1. For a given d-dimensional hypercubic subspace of
side length s, let Sk be the set of buckets whose Manhattan
distance from the origin of the subspace is equal to k. Then
the cardinality of Sk is

|Sk| = d
i

d k i s
d

i

k s
i�� ��

+ − × −
−

�� �� −
=
∑ 1

1 1
0

/

0 5 .   (1)

PROOF. By definition Sk is isomorphic to an integer vector

set ′Sk  = {(x1, ¤, xd) | x1 + L + xd = k, 0 � xi < s}.

Consider another integer vector set Tk = {(x1, ¤, xd)

| x1 + L + xd = k, xi � 0}, which is a superset of ′Sk .

Then, let fk  and gk be the cardinality of ′Sk  and Tk, re-

spectively. Since |Sk| = | |′Sk  = fk and |Tk| = gk = C(k,

d) = d k
d
+ −

−
�� ��

1
1 , all we have to do is to show

fk = d
i gk is

i

k s
i�� �� −−

=
∑

0

1
/

0 5 .     (2)

We shall show this by induction on k.

i) Basis. If 0 � k < s (i.e., Ók/sã = 0), ′Sk  and Tk are iden-
tical. Thus,

fk = gk = d
i gk is

i

k s
i�� �� −−

=
∑

0

1
/

0 5 .

ii) Induction. Suppose n > 0, and assume (2) holds
when 0 � k < ns (i.e., Ók/sã < n). Now, if ns � k <
(n + 1)s (i.e., Ók/sã = n),

′Sk  = Tk - {(x1, ¤, xd) ¶ Tk | one or more x, ’s � s}

= Tk - ( , . . . ) | ( )x x T is x i sd k
x si

n

1
1

1∈ ≤ < +
%
&K
'K

(
)K
*K≥=

∑ l

l

U

= Tk - 
( , . . . ) |

( ) ,|{ | }|

x x T is

x i s x x s j
d k

x sj

i

i

n 1

11
1

∈

≤ < + ≥ =

%
&K
'K

(
)K
*K≥==

∑ l l l

l

UU

For given i and j, let

Tk,i,j = {(x1, ¤, xd) ¶ Tk | is �

x i s x x s j
x s

l l l

l

< + ≥ =
≥

∑ ( ) ,|{ | }| }1

and

Bk,i,j = {(y1, ¤, yd)| yl =

Óxl/sã, (x1, ¤, xd) ¶ Tk,i,j}.

Then, for each element (y1, ¤, yd) ¶ Bk,i,j,

y i j y
d

y
l

l
l

l

= = ≥
= ≥

∑ ∑and and
1 1

1 0 .

Thus, |Bk,i,j| = d
j
�� �� C(i - j, j) = d

j
�� ��

i
j

−
−

�� ��
1
1 .

Now note that the set Tk,i,j can be split into mutu-
ally disjoint subsets each of which corresponds to
an element in Bk,i,j. In other words,

Tk,i,j = ( , . . . , ) | /, ,
,..., , ,

x x T x s yd k i j
y y Bd k i j

1

1

∈ =
∈

l lJ L
2 7

U .

Since each of the subsets is isomorphic to ′ −Sk is ,

|Tk,i,j|= |Bk,i,j| �  | ′ −Sk is | = |Bk,i,j|fk-is.

Therefore,

fk = |Tk|- Tk i j
j

i

i

n

, ,
==
∑∑

11

= gk - d
j

i
j fk iS

j

i

i

n �� ��
−
−

�� �� −
==
∑∑ 1

1
11

= gk - d i
i fk iS

i

n + −�� �� −
=
∑ 1

1

From induction, fk-iS = d
jj

k S i �� ��=

−∑ 0

/
gk-jS (-1)j. Thus,

it follows that

fk = gk - d i
i

d
j gk jS

j

j

n i

i

n + −�� �� �� �� −−
=

−

=
∑∑ 1 1

01

( )

= gk + d i
j

d
i j gk iS

i

j

i

i

n + −�� �� −
�� �� −−

==
∑∑ 1 1

11

( )

= d
i gk iS

i

i

k S �� �� −−
=
∑ ( )

/

1
0

.

The proof is now complete.            o

THEOREM 1. If a given query is d-dimensional hypercubic of side
length s, then for any M,

RDM(s, M) � 
d s

k

( )
max

−

=

1

0
|Sk|.        (3)

PROOF. Let x be a bucket at the corner of the subspace re-
trieved by the query each of whose coordinates is
minimal in the corresponding dimension. Then, by
the Disk Modulo scheme, all the buckets which have
the same Manhattan distance from the bucket x are
assigned to the same disk. Since the set Sk is not
empty (i.e., |Sk| > 0) only for k such that 0 � k �
d(s - 1), the maximum number of buckets fetched
from a disk cannot be less than the largest value of
|Sk| for 0 � k � d(s - 1). The proof is now complete.  o

Although the closed-form expression of |Sk| in (1) is not
available as yet, it is relatively easy to derive upper bounds

of |Sk| for two and three dimensions. In two-dimensional

space, |Sk| is bounded by s; in three-dimensional space, it

is bounded by 3
4

2S  for even s and by 3 1
4

2S +  for odd s. In

general, we conjecture that the |Sk| becomes maximal
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when k is an integer closest to d S( )−1
2 . See Fig. 2a and Fig. 2b

for the distribution of |Sk| in three-dimensional and
four-dimensional cases. Therefore, coupled with this con-
jecture, we claim that Disk Modulo does not improve
response time at all by increasing the number of disks

beyond M = d S( )−1
2  + 1.

COROLLARY 1. For square or cubic range queries of side length s,

RDM(s, M) =

s if M s when the dimensionality is two

s
if M

s
when the

dimensionality is three

≥
+ 

!
  

#
$
## ≥

− 
! 

#
$# +

%
&
KK

'
KK

,

( )

.

3 1
4

3 1
2 1

2

Note that Li et al. [33] have reached the conclusion
that Disk Modulo is optimal for range queries on Cartesian
product files for almost all cases. While this might be true in
the past when system configurations with large number of
disks were not usual, it is no longer true. From Theorem 1
and Corollary 1, it is apparent that the performance of Disk
Modulo saturates and adding more disks provides no bene-
fit. The position of the threshold depends on the size of the
query. This is corroborated by simulation results given later
in this paper.

THEOREM 2. For a given two-dimensional square range query of
side length s, let a = Ós/Mã and b = s mod M. Then the
following properties are satisfied:

(a)

(b)

Fig. 2. Manhattan distance vs. the cardinality of Sk: (a) |Sk| in a three-dimensional space; (b) |Sk| in a four-dimensional space.
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i) RDM(s, M) = (2a + 1)s - a(a  + 1)M for any s

and M. That is, when M is fixed, R DM(s, M) is a

piecewise linear function of s.

ii)� RDM(s, M) = ROpt(s, M) + b - Ñb2/Má if M � s,

where ROpt(s, M) is the response time of a strictly

optimal declustering method.
iii)� Disk Modulo is strictly optimal if and only if M �

s Á b2 - Mb + M > 0.
PROOF. Property i): If M > s, then a = 0 and RDM(s, M) = s by

Corollary 1. Thus, the property i) holds. If M � s, split
the square query region into four disjoint subregions,
whose sizes are Ma  � Ma, Ma  �  b, b  � Ma, and
b  � b. Then, since the first three subregions have
at least one side of length multiple of M, the buckets
in these subregions are uniformly distributed across
the M disk units. (See Theorem 3.2 in [15].) Specifi-
cally, the number of buckets accessed from each disk
is Ma2 + 2ab. However, the buckets in the fourth
subregion (i.e., b  � b subregion) are not uniformly
distributed, and the maximum number of buckets
from the same disk is b  by Corollary 1. Therefore,
since b  = s - aM, the response time of the s � s query
is given by

RDM(s, M) = Ma2  +  2ab   +  b =

(2α  + 1)s - α( α + 1)M.

Properties ii) and iii): Since ROpt(s, M) = Ñs2/M á = 
Ma2 + 2ab + Ñb 2/M á, we obtain

RDM(s, M) = ROpt(s, M) + b -  [b 2/Má.

By Corollary 1, it is clear that M � s is the necessary
condition for the strict optimality because RDM(s, M) =
s >  Ñs2/M á = ROpt(s, M) if M > s. Thus, the necessary
and sufficient condition for the strict optimality is M �
s Á b = Ñb 2/M á, which is equivalent to M � s Á b 2 -
Mb + M > 0.            o

Theorem 2 gives the closed form expressions of response
time as well as the necessary and sufficient condition for
the strict optimality of Disk Modulo declustering method.
The implications of this theorem are:

1)�DM can be strictly optimal only when the number
of disks is small and the query size is relatively
large, and

2)� for some range queries (s < M), increasing the number
of disks does not improve the response time at all.

In addition, for any M � 3, this theorem gives a tighter up-
per bound on the response time than ROpt(s, M) + M - 2
given in [33] when the dimensionality is two.

4� SCALABILITY OF FIELDWISE XOR DECLUSTERING

Kim and Pramanik [31] have shown that when both the
number of disks and the size of each field are power of two,
the set of partial match queries which are optimal under
Fieldwise Xor (FX) declustering method is a superset of that

for Disk Modulo declustering method. Based on similar
assumptions, in this section we shall present a sufficient
condition for the strict optimality of the Fieldwise Xor de-
clustering method for hypercubic range queries. Further,
we shall show that the performance of the Fieldwise Xor
tends to improve as the number of disks increases, its scal-
ability is still significantly limited under certain conditions.

The Fieldwise Xor method replaces the summation
operation in the Disk Modulo disk assignment formula
with a bitwise exclusive-or operation (­) on the binary
values of bucket coordinates. This scheme assigns a bucket
[i1, i2, ¤, id] to a disk unit number

(i1 ­ i2 ­ ¤ ­ id) mod M.

Fig. 3 illustrates the same Cartesian product file used in
Section 3 whose buckets are distributed across four
disks by the Fieldwise Xor declustering method. Each
bucket is annotated by a disk unit number to which the
bucket is assigned.

Fig. 3. Disk allocation by Fieldwise Xor declustering method (M = 4).

The basic approach to the scalability analysis of Field-
wise Xor is to show that the response time of a given query
depends on the location of its answer set within the corre-
sponding Cartesian product file and increasing the number
of disks does not improve the response time of the query
under certain conditions. For the purpose of the analysis,
we make the following assumptions:

1)�The number of disks is a power of two (i.e., M = 2k).
2)�Queries are hypercubic of side length a power of two

(i.e., s = 2m ).
It is also assumed that the sizes of Cartesian product files
are sufficiently large. Thus, it is not necessary to use the
field transformation functions proposed in [32], which are
injective mappings for the attributes in a given Cartesian
product file the number of subdomains of which is less than
the number of disks.
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Recall that in a given d-dimensional Cartesian product
file, a hypercubic range query retrieves a set of buckets
which belong to a subspace delimited by the query and
hence the answer set can be uniquely identified by its side
length and the coordinate of its origin. By origin we mean a
bucket at the corner of the subspace each of whose coordi-
nates is minimal in the corresponding dimension. We begin
the analysis with a notation about query sizes and locations
within a Cartesian product file.

NOTATION 2. Let qI(2
m) denote a hypercubic range query

whose side length is 2m and whose origin is located at
I = [i1, i2, ¤, id].

Since the Fieldwise Xor uses [RU (­) and PRG operations
to determine the disk unit number for each bucket in a
Cartesian product file, we give a notation for the binary
representation of integers. Then, in the following lemmas,
we present some fundamental properties related to such
operations on binary representation of bucket coordinates,
which are useful in deriving the formula of FX scalability.

NOTATION 3. x[i] denotes the ith least significant bit of an inte-
ger x. x[1] and x[n] represent the least and the most sig-
nificant bits of an n-bit integer x, respectively.

LEMMA 4.1. For nonnegative integers a, b, and m such that
|a - b| < 2m, the following properties are satisfied for any
integer k > m:

i)� If a[k] = b[k], then a[k + 1] = b[k + 1].
ii)� If a[k] = 0 Á b[k] = 1 Á a < b, then a[k + 1] =

b[k + 1].
iii)� If a[k] = 0 Á b[k] = 1 Á a > b, then a[k + 1] =

b k +  [ 1].

PROOF. We shall prove the first property by contradiction.
The other proofs are similar. Suppose a[k + 1] ¡
b[k + 1]. Then, without loss of generality, we can as-
sume a[k + 1] = 0 and b[k + 1] = 1. First, if a > b, then
the minimal value of a which is greater than b is 2k+1 +
a[k] � 2k−1, and the maximal value of b which is less
than a is 2k + b[k] � 2k−1 + 2k−1  - 1. Since a[k] = b[k],

|a - b| � (2k+1 + a[k] � 2k−1) -

(2k + b[k] � 2k−1 + 2k−1  - 1) =

2k+1 - 2k - 2k−1 +  1 = 2k−1 + 1.
Second, if a < b, then the maximal value of a which is
less than b is a[k] � 2k−1 + 2k−1 - 1, and the minimal
value of b which is larger than a is 2k + b[k] � 2k−1.
Likewise, since a[k] = b[k],

|a - b| � (2k + b[k] � 2k−1) -

(a[k] � 2k−1 + 2k−1 - 1) =

2k - 2k−1 + 1 = 2k−1 + 1.

Therefore, since k > m, in both the cases,

|a - b| � 2k−1 + 1 > 2m.

This is a contradiction to the assumption that |a - b|
< 2m. The proof of the first property is now complete.
The other proofs are omitted.            o

LEMMA 4.2. For nonnegative integers a, b, i, m, and k such that
i � a, b � i + 2m - 1 and k > m,

a[k] = i[k] Á b[k] ¡ i[k] Æ a < b.

PROOF. Let a = i + a for 0 � a � 2m - 1. Then, a = (i - i mod
2k−1) + (i mod 2k−1 + a), and it follows that (i - i mod
2k−1)[k] = i[k] and 0 � (i mod 2k−1 + a) � 2k−1 + 2m - 2 <
2k - 1. Thus, the following properties are satisfied:

a[k] = i[k] if and only if 0 � i mod 2k−1 + a  � 2k−1 - 1,

a[k] = i k[ ] if and only if 2k−1 �

i mod 2k−1 + a  � 2k−1 + 2m - 2.

From these, we obtain

a[k] = i[k] Æ a - i � 2k−1 - i mod 2k−1 - 1

b[k] ¡ i[k] Æ b - i � 2k−1  - i mod 2k−1.

Therefore, if a[k] = i[k] Á b[k] ¡ i[k], then a is always
less than b.            o

The following lemma presents an interesting relationship
between two buckets in the answer set of a given hypercu-
bic range query whose side length is less than the number
of disks. This lemma shall provide key leverage for deriv-
ing Theorem 3.

LEMMA 4.3. For any pair of buckets X = [x1, ¤, xd] and Y =
[y1, ¤, yd] in the answer set of a given qI(2

m), the follow-
ing property is satisfied for any integer k > m:

(i1 ­ i2 ­ ¤ ­ id)[k] = 0 Æ (x1 ­ x2 ­ ¤ ­ xd)[k + 1] =

(y1 ­ y2 ­ ¤ ­ yd)[k + 1]     (4)

where the coordinates of I are given by [i1, ¤, id].

PROOF. To prove this lemma, we have to show that there
always exists an even number of (xj, yj) pairs such that
xj[k + 1] ¡ yj[k + 1] if (i1 ­ i2 ­ ¤ ­ id)[k] = 0 holds.
Consider xj[k] and yj[k] of X and Y for some j(1 � j � d).
Since the buckets X and Y are in the answer set of the
qI(2

m), the following property is satisfied:

ij � xj, yj � ij + 2m – 1.

Consequently, if xj[k] = yj[k], then xj[k + 1] =

yj[k + 1] from the first property of Lemma 4.1.

Otherwise, either xj[k] = ij[k] Á yj[k] = i kj[ ] or xj[k] =

i kj[ ] Á yj[k] = ij[k] holds. Thus, it follows from Lemma

4.2 that if xj[k] ¡ yj[k] then

xj[k] = ij[k] Á yj[k] = i kj[ ] Á xj < yj  or

xj[k] = i kj[ ] Á yj[k] = ij[k] Á xj > yj.

In both cases, from the second and third properties of
Lemma 4.1, the following are satisfied:

ij[k] = 0 Æ xj[k + 1] = yj[k + 1],

ij[k] = 1 Æ xj[k + 1] ¡ yj[k + 1].

These imply that the number of (xj, yj) pairs such that
xj[k + 1] ¡ yj[k + 1] is equal to the number of ijs such
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that ij[k] = 1, which is always even from the condition
(i1 ­ i2 ­ ¤ ­ id)[k] = 0. The proof is now complete. o

Before giving a theorem which formulates the scalability
of the Fieldwise Xor declustering method, we present the
following lemma to give an intuition to the response time
distribution and optimal conditions.

LEMMA 4.4. When M = 2k, for a d-dimensional hypercubic range
query q = qI(2

m), the following properties are satisfied:

i)� If 2k � 2m, then RFX(2m, 2k) = 2md−k and FX is strictly
optimal.

ii)� If 2k > 2m, then 2md−k � RFX(2m, 2k) � 2m(d−1).
iii)� RFX(2m, 2k+1) � ÑRFX(2m, 2k)/2á.

PROOF. Suppose two distinct buckets X = [x1, ¤, xd] and Y =
[y1, ¤, yd] are in the same line which is parallel with
the jth dimensional axis in the d-dimensional space.
Then, xj ¡ yj and x, = y, for any l such that 1 � l � d
and l  ¡ j. Thus, it is the case that

i) For any k � m, at most 2m−k buckets in the same line
have the same (mod 2k) value.

ii) For any k > m, each bucket in the same line has a
unique (mod 2k) value.

First, if k � m, then in the worst case the same
(mod2k) value appears in each of 2m�(d−1) line seg-
ments within q. Therefore,

RFX(2m, 2k) � 2m�(d−1) � 2m−k = 2md−k.

From the fact that RFX(2m, 2k) � ROpt(2
m, 2k) = 2md/2k =

2md−k, we obtain

RFX(2m, 2k) = 2md−k.

Second, if k > m, then

RFX(2m, 2k) � 2m�(d−1)

because in the worst case the same (mod 2k) value ap-
pears in every line of qI(2

m). Therefore,

2md−k � RFX(2m, 2k) � 2md−m.

Finally, the third property of this lemma is satisfied
because when the number of disks is increased from
2k to 2k+1, at best the buckets previously assigned to
the same disk g are evenly distributed across two
disks g and g + 2k. o

From Lemma 4.4i), it is evident that the inequality k � m
is the sufficient condition for the strict optimality of the
Fieldwise Xor method. However, the condition is not a nec-
essary condition due to the left inequality 2md−k � RFX(2m, 2k)
of Lemma 4.4ii). The Fieldwise Xor can be indeed optimal
for some queries even when k > m. For example, consider
the Cartesian product file given in Fig. 3. The buckets in this
file are distributed across four disks (M = 22, i.e., k = 2) by
the Fieldwise Xor method. If a query q is given by <[T, Y],
[52, 65]>, then the q is square and the side length s = 21 (i.e.,
m = 1). This particular query q requires exactly one bucket
from each of the four disks and the response time of the q is
optimal.

In the following theorem, we show that the scalability of
the Fieldwise Xor method for hypercubic range queries is
limited.

THEOREM 3. Let R FX
m( , )2 2k  be the expected response time

of the 2k-disk Fieldwise Xor declustering method for a

d-dimensional hypercubic range query of side length 2m.
Then for any integer k > m,

RFX
m( , )2 2 1k+  � 

3
4 ( , )RFX

m2 2k . (5)

PROOF. For any pair of buckets X = [x1, ¤, xd] and Y =
[y1, ¤, yd] in the answer set of a given qI(2

m) where I =
[i1, ¤, id], it follows from Lemma 4.3 that

((i1 ­ i2 ­ ¤ ­ id)[k] = 0) Á
((x1 ­ x2 ­ ¤ ­ xd)mod 2k

= (y1 ­ y2 ­ ¤ ­ yd)mod 2k)

implies

(x1 ­ x2 ­ ¤ ­ xd)mod 2k+1 =

(y1 ­ y2 ­ ¤ ­ yd)mod 2k+1.

In other words, for a given query qI(2
m), if (i1 ­ i2

­ ¤ ­ id)[k] = 0 holds, then the response time of
the query is not improved at all even when
the number of disks is doubled up (i.e., RFX

m( , )2 2 1k+

= R FX
m( , )2 2k ). From the fact that (i1 ­ i2 ­ ¤ ­ id)

[k] = 0 holds for the half of the entire query
population and Lemma 4.4iii), we obtain RFX

m( , )2 2 1k+

� 
3
4 ( , )RFX

m2 2k . o

If there exists a declustering algorithm with ideal scal-
ability, then it must be the case that R Opt( , )s k2 1+  =

1
2  R Opt( , )s k2  for any integer k. In other words, by dou-

bling up the number of disks, an ideal declustering algo-
rithm must be able to cut the half of the response time for
any query. In contrast, from the above theorem, the Field-
wise Xor can improve the average response time of such
queries at best only by 25 percent by doubling up the num-
ber of disks. This means that the scalability of the Fieldwise
Xor is far from ideal when the number of disks is larger
than the side length of a hypercubic query. Through simu-
lation experiments, we shall show that the actual scalability
of Fieldwise Xor is even worse than Theorem 3 suggests.

5� EXPERIMENTAL RESULTS

In this section, we validate the correctness of the analytic
formulas presented in the previous sections and show their
applicability to more general cases through simulation ex-
periments. We carried out experiments for multidimen-
sional range queries of various sizes and shapes and vari-
ous numbers of disks. In addition to the Disk Modulo (DM)
and the Fieldwise Xor (FX), we compared Hilbert Curve-
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Allocation Method (HCAM) and vector-based method to
show the limited scalability of the Disk Modulo and the
Fieldwise Xor methods. The results from the vector-based
method are available only for two-dimensional Cartesian
product files because the vector generation procedure for
higher dimensional Cartesian product files has not been
developed yet [8].

5.1�Description of the HCAM and the Vector-Based
Method

Before we present the experimental results, we describe the
Hilbert curve-allocation method (HCAM) [17] and the
vector-based declustering method [8] for comparison. The
HCAM uses the Hilbert space-filling curve to impose a
linear ordering on the buckets in a Cartesian product file.
Fig. 4 shows such an ordering that starts from a bucket at
the lower-left corner (i.e., bucket [0, 0]) of the same Carte-
sian product file used in Section 3. Then it traverses the
buckets in the order assigning each bucket to a disk unit in
round-robin way. Fig. 4 illustrates the buckets distributed
across four disks by the HCAM.

Fig. 4. Disk allocation by the HCAM (M = 4).

The vector-based declustering method generates a pair
of integer vectors for a given number of disks and aligns
the buckets in a Cartesian product file with the vectors.
Specifically, given a pair of such vectors u = (a, b) and v =
(c, d), all the buckets with coordinates of the form [x + ma +
nc, y + mb + nd] for any integers m and n are assigned to the
same disk with a bucket [x, y]. For example, the vector-
based method generates two vectors u = (0, 2) and v =
(-2, 1) for four disks. If a bucket [0, 0] is assigned to the
disk unit 0, then

bucket [0, 2] is assigned to disk unit 0 (m = 1 and n = 0),
bucket [0, 4] is assigned to disk unit 0 (m = 2 and n = 0),
bucket [1, 2] is assigned to disk unit 0 (m = 1 and n = -1),

etc. Fig. 5 illustrates the buckets distributed across four
disks by this method.

Fig. 5. Disk allocation by the vector-based method (M = 4).

5.2�Arrangements of Experiments
The purpose of our experiments is to validate and provide a
better understanding of the analytic results given for the
Disk Modulo and the Fieldwise Xor. Since there are various
parameters such as the number of available disks, the sizes
and shapes of range queries and the dimensionality of a
given Cartesian product file, which affect the performance
of the declustering methods, our experiments were de-
signed to show:

•� How closely DM and FX methods scale and follow
the formulas given in Theorems 1, 2, and 3 as the
number of disks increases in two or higher dimen-
sional cases.

•� How closely the performance of FX matches the for-
mula given in Theorem 3 when the side lengths of que-
ries and Cartesian product files are not power of two.

•� How much the sizes and shapes of range queries af-
fect the performance of DM and FX methods empha-
sizing the cases with large number of disks.

In our experiments, we used d-dimension hypercubic
Cartesian product files with a side length N. To compute
the expected response time of a given type of d-dimension
range queries, we generated a set of distinct queries of the
same size and shape at all possible positions within a given
Cartesian product file. This was based on an assumption
that every bucket of a Cartesian product file is equally
likely to be requested by queries (i.e., the uniform distribu-
tion of queries). For each declustering method with a vary-
ing number of disks and for a given type of d-dimension
range queries, we averaged the response times over the set
of queries. By definition, the response time of a query is the
maximum number of buckets accessed from the same disk.

Since the number of all possible queries is exponential on
the dimensionality, for a large Cartesian product file and
high dimensionality, each simulation run may require proc-
essing an excessively large number of queries, making the
simulation take too long. Thus, in our experiments, we lim-
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ited the dimensionality to two, three and four. The side
length N of the hypercubic Cartesian product file was 64,
except for a four-dimensional case where N was 32.

5.3�Results
The first set of experiments were carried out to examine
the scalability of DM and FX declustering methods with
respect to the increasing number of disks. In these experi-
ments, the shape of queries was fixed to be square and the
number of disks was varied from four to 32. Fig. 6a and Fig.
6b illustrate the average response time of square range que-
ries of two different sizes in a two-dimensional Cartesian
product file. Fig. 6c and Fig. 6d show the results from the
similar experiments done on three-dimensional and four-

dimensional Cartesian product files, respectively. In addi-
tion to the plots for the four declustering methods (i.e., DM,
FX, HCAM, and vector-based), optimal response times are
also presented as a lower bound, which may not always be
achieved.

With only a few exceptional cases, the response time
of DM was very close to optimal before the number of
disks grows beyond certain threshold values, which were
7, 15, 10, and 7 in Fig. 6a to Fig. 6d, respectively. However,
when the number of disks becomes larger than those
threshold values, the response time of DM does not im-

prove and remains constant. For example, RDM(s, M) = s = 7

when M � s in Fig. 6a, RDM(s, M) = 3 1
4

2S +  = 37 when M �

(a)

(b)

Fig. 6. Effects of increasing numbers of disks: (a) two-dimensional case: query = 7 � 7; (b) two-dimensional case: query = 15 � 15 (this figure
continues on the next page).
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3 1
2

( )S−  + 1 = 10 in Fig. 6c, and RDM(s, M) = 44 when M �
4 1

2
( )S−  + 1 = 7 in Fig. 6d. These results match the formulas

given in Theorem 1 and Corollary 1, and also confirm our

early conjecture given in Section 3 that Sk becomes maximal

when s is an integer closest to d S( )−1
2 .

The behavior of FX is a little more involved than that of
DM. Under most circumstances, the response time of FX is
optimal or close to optimal only when the number of disks
is a power of two and is no greater than the side lengths of
square range queries. These results corroborate the formulas
given in Lemma 4.4. Other than these situations, the re-
sponse time of FX is far from being optimal, though FX tends

to outperform DM when the number of disks becomes larger
than the threshold values described above for DM. More im-
portantly, the response time of FX shows quasiperiodic
patterns. When the number of disks is greater than the side
lengths of square range queries, noticeable improvements
in its performance were observed only when the number of

disks was increased from 2k - 1 to 2k, and the response

time remained almost constant in between 2k and 2k+1 - 1. We
also observed that the formula given in Theorem 3 was satis-
fied in all the cases. For example, RFX (7, 16)/ RFX  (7, 8) =
5.73/7.0 = 0.82 > 3

4  in Fig. 6a, RFX (15, 32)/RFX (15, 16) =

12.31/15.0 = 0.82 > 3
4  in Fig. 6b, RFX (7, 32)/RFX (7, 16) =

(c)

(d)

Fig. 6. Effects of increasing numbers of disks: (c) three-dimensional case: query = 7 � 7 � 7; and (d) four-dimensional case: query = 4 � 4 � 4 � 4.
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26.43/29.52 = 0.90 > 3
4  in Fig. 6c, and RFX (4, 16)/RFX (4, 8)

= 28.99/36.25 = 0.80 > 3
4  in Fig. 6d.

In this set of experiments, both vector-based methods
and HCAM scaled much better than DM and FX. In the
two-dimensional cases, the response time of the vector-
based method was very close to optimal. This is due mainly
to the fact that the vector-based method uses a unique pair
of integer vectors best fit for the specific number of disks.
HCAM was the second best in the two-dimensional cases
with only a few exceptions when M is small, and reasona-
bly close to optimal in higher dimensional cases. For exam-

ple, in Fig. 6d, the performance of HCAM was less than
38 percent off from optimum.

Another set of experiments were carried out to investi-
gate the effects of increasing sizes of queries for a two-
dimensional Cartesian product file. In these experiments,
the shape of queries was fixed to be square and the side
length of the square queries was varied from two to 32.
Fig. 7a through Fig. 7d show the average response time of
square range queries when the number of disks M = 16, 32,
48, and 64, respectively.

When M = 16, as shown in Fig. 7a, the relative perform-
ance of the DM, FX and HCAM declustering methods was

(a)

(b)

Fig. 7. Effects of increasing query sizes: (a) square queries with M = 16; (b) square queries with M = 32 (this figure continues on the next page).
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identical to the result given by Himatsingka and Srivastava
in [27]. For small queries (where s � M), the performance of
the vector-based and HCAM was the best, followed by
those of FX and DM. On the other hand, for large queries
(where s > M), the performance of all the methods becomes
closer to each other with the exception of HCAM with s �
30. Note that the DM curve in Fig. 7a changes its slopes at s
= 16 (i.e., s = M) from 1 to 3. Specifically, the function of DM
curve was s when 1 � s < M and 3s - 32 when M � s < 2M
- 1. This matches the formula given in Theorem 2i.

However, when the number of disks grows larger, as
shown in Fig. 7b to Fig. 7d, the performance gap between
the clustering methods becomes more striking. For exam-

ple, in Fig. 7d, the vector-based was the best and the
HCAM was the second best. Whereas the vector-based and
HCAM are fairly close to optimal, both DM and FX are far
from optimal. Evidently this is because small queries be-
come a dominant portion of the query population as M
grows. FX outperforms DM at all times when the number of
disks is a power of two (i.e., M = 32 and M = 64 in Fig. 7b
and Fig. 7d, respectively). The performance of FX, however,
deteriorates rapidly as the size of queries grows when the
number of disks is not a power of two (i.e., M = 48 in
Fig. 7c) and actually becomes worse than that of the case
when a smaller power-of-two number of disks are used. For
example, we have observed RFX (s, 48) > RFX (s, 32) when s

(c)

(d)

Fig. 7. Effects of increasing query sizes: (c) square queries with M = 48; and (d) square queries with M = 64.
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� 19 in Fig. 7b and Fig. 7c). This is evidently an anomaly of
the FX declustering method.

To examine the effects of query shapes, we measured the
average response time of nonsquare range queries. In these
experiments, the number of disks was varied from four to
32. Fig. 8a and Fig. 8b show the results of rectangular que-
ries of size 4 � 12 and 3 � 15, respectively. Under most cir-
cumstances, the vector-based method was the best closely
followed by DM, and FX was the worst among the DM, FX,
HCAM and vector-based declustering methods. HCAM
was better than DM only when M � 23 in Fig. 8a and M � 31
in Fig. 8b. The performance of DM tends to improve as the

aspect ratio (i.e., the ratio of the two side lengths) of queries
increases, where the range queries become quite similar to
partial-match queries.

The main conclusions from our experiments are:

•� For large queries and small number of disks, the per-
formance of various declustering methods was quite
close to each other and not very far from optimal.

•� As Li et al. concluded in [33], the Disk Modulo is a
reasonable choice for declustering Cartesian product
files under various circumstances. However, if the
prevailing type of queries is hypercubic or near-

(a)

(b)

Fig. 8. Effects of query shapes: (a) nonsquare query (4 � 12); (b) nonsquare query (3 � 15).
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hypercubic of side length s, then the number of disks

should not be increased beyond d s( )−1
2  + 1

•� Other than a few cases with small number of disks,
the performance of the Fieldwise Xor showed qua-
siperiodic patterns. In other words, when M > s,

RFX (s, M) for 2k � M < 2k+1 was almost equal to or

slightly worse than RFX (s, 2k), and most noticeable
improvements were observed only when the number

of disks was increased from 2k - 1 to 2k. Moreover, the
performance of the Fieldwise Xor tends to be worse
than that of the Disk Modulo if the number of disks
is not a power of two and the size of queries becomes
large. Therefore, by replacing the Disk Modulo with
the Fieldwise Xor, we expect performance improve-
ment only when the number of disks is a power
of two.

•� HCAM scaled well and was fairly close to optimal in
all our experiments. This result coincides with the ob-
servation made in [17]. Under most circumstances, the
vector-based method was the best for declustering
two-dimensional Cartesian product files. However,
since the vector generation procedure for higher di-
mensional Cartesian product files has not been devel-
oped as yet, HCAM appears to be an effective de-
clustering method of most general applicability.

6 CONCLUSION AND FUTURE WORK

We have studied the problem of declustering Cartesian
product files focusing on the scalability of Disk Modulo and
Fieldwise Xor methods. Using the response time of hyper-
cubic range queries as a metric, we have derived a few for-
mulas which state the limited scalability and the optimal
conditions for both the declustering methods. Through
simulation experiments we have validated the correctness
of the formulas, and elaborated some recommendations for
choosing declustering methods under various situations.
The main contributions of this paper are:

•� The analytic formulas given in Theorem 1, Theorem 2,
and Corollary 1 provide upper bounds of the per-
formance improvements for Disk Modulo decluster-
ing method with increasing number of disks.

•� Through algebraic analysis summarized in Theorem 3
and simulation experiments, we have shown that the
scalability of Fieldwise Xor is limited and its perform-
ance deteriorates rapidly as the size of queries grows
when the number of disks is not a power of two. This
is the first analytic and empirical result of the Field-
wise Xor declustering method for hypercubic range
queries.

•� Through simulation experiments, we have shown
that the Hilbert curve-allocation method (HCAM)
scales well and is fairly close to optimal in all our
experiments.

From the simulation experiments, we have observed that
the average response time of nonsquare range queries does
not follow the analytic formulas, and the performance be-
haviors of the declustering methods may depend signifi-

cantly on the shapes of queries. For example, the perform-
ance of Disk Modulo improved as the aspect ratio (i.e., the
ratio of the side lengths) of queries increased and outper-
formed the HCAM in many cases. To complete the scalabil-
ity study of declustering methods, we plan to extend the
analysis for Disk Modulo and Fieldwise Xor to nonhyper-
cubic range queries.

It is widely believed that the Hilbert space-filling curve
achieves the best clustering among reported linear mapping
schemes [19], [29]. In [38], Moon et al. derived closed-form
formulas of the number of clusters required by a given
query region of an arbitrary shape for the Hilbert curve,
and have shown that the Hilbert curve achieves far better
clustering than z-curve, which is also called Morton curve.
This means that when a d-dimensional space is mapped
onto a linear space by Hilbert curve, the locality between
objects in the d-dimensional space is expected to be well
preserved in the linear space. Since HCAM exploits such
a clustering property of Hilbert curve, it can achieve
better declustering than other linearization methods such
as z-ordering [40] and Gray coding with bit-interleaving
[16]. Since the analysis of the declustering properties of
the HCAM is not available yet, we propose the scalability
analysis of the HCAM as our future research.

The assumption made in this paper and most of the lit-
erature was that queries are uniformly distributed in a
given d-dimensional space. However, this assumption may
not hold in many real-world applications. Even though the
systems studied by many scientific applications are spread
over a Euclidean space, the measurements are not uni-
formly distributed over the space. The system properties
are often measured in the regions where an interesting phe-
nomenon takes place. For example, in a three-dimensional
aircraft simulation, the region close to airfoil and other
control surfaces will be paid more attention than others
because the main physical phenomena of interest happen in
the region. More interestingly, in some adaptive applica-
tions, the region of interest may change between different
time units. Thus, it may be desirable to know the custom-
ized access patterns of such applications where the distri-
bution of queries is not uniform.

One possible way is to let users specify a set of points
or regions of interest in the problem domain which may
have different priorities or access frequencies. Then the
problem domain may be divided into a finite number of
equivalence classes so that a declustering method can be
applied to each equivalence class separately. An issue that
arises here is under what criterion the problem domain will
be divided into multiple disjoint classes. We plan to de-
velop parametric metrics which consider the expected ac-
cess patterns for given regions of interest and spatial dis-
tance from those regions.
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