


gorithms and access methods will function adequately without any
modification. On the other hand, due to a few limitations of flash
memory, this approach is not likely to yield the best attainable per-
formance. With flash memory, no data item can be updated in place
without erasing a large block of flash memory (called erase unit)
containing the data item. As is shown in Table 1, writing a sector
into a clean (or erased) region of flash memory is much slower than
reading a sector. Since overwriting a sector must be preceded by
erasing the erase unit containing the sector, the effective write band-
width of flash memory will be even worse than that. It has been re-
ported that flash memory exhibits poor write performance, partic-
ularly when small-to-moderate sized writes are requested in a ran-
dom order [2], which is quite a common access pattern for database
applications such as on-line transaction processing (OLTP). These
unique characteristics of flash memory necessitate elaborate flash-
aware data structures and algorithms in order to effectively utilize
flash memory as data storage media.

In this paper, we present a novel in-page logging (IPL) approach
toward the new design of flash-based database servers, which over-
comes the limitations of and exploit the advantages of flash mem-
ory. To avoid the high latency of write and erase operations that
would be caused by small random write requests, changes made to
a data page are buffered in memory on the per-page basis instead of
writing the page in its entirety, and then the change logs are written
sector by sector to the log area in flash memory for the changes to
be eventually merged to the database.

The most common types of flash memory are NOR and NAND.
NOR-type flash memory has a fully memory-mapped random ac-
cess interface with dedicated address and data lines. On the other
hand, NAND-type flash memory has no dedicated address lines and
is controlled by sending commands and addresses through an indi-
rect IO-like interface, which makes NAND-type flash memory be-
have similarly to magnetic disk drives it was originally intended to
replace [15]. The unit of read and write operations for NAND-type
flash memory is a sector of typically 512 bytes, which coincides
with the size of a magnetic disk sector. For the reason, the comput-
ing platforms we aim at in this paper are assumed to be equipped
with NAND-type flash memory instead of magnetic disk drives.
Hereinafter, we use the term flash memory to refer to NAND-type
flash memory, unless we need to distinguish it from NOR-type flash
memory.

The key contributions of this work are summarized as follows.

• A novel storage management strategy called in-page logging
is proposed to overcome the limitations of and exploit the
advantages of flash memory, which is emerging as a replace-
ment storage medium for magnetic disks. For the first time,
we expose the opportunities and challenges posed by flash
memory for the unique workload characteristics of database
applications. Our empirical study demonstrates that the IPL
approach can improve the write performance of conventional
database servers by up to an order of magnitude or more for
the OLTP type applications.

• The IPL design helps achieve the best attainable performance
from flash memory while minimizing the changes made to
the overall database server architecture. This shows that it is
not only feasible but also viable to run a full-fledged database
server on a wide spectrum of computing platforms with flash
memory replacing magnetic disk drives.

• With a few simple modifications to the basic IPL design, the
update logs of the IPL can be used to realize a lean recov-
ery mechanism for transactions such that the overhead dur-
ing normal processing and the cost of system recovery can

be reduced considerably. This will also help minimize the
memory foot-print of a database server, which is particularly
beneficial to mobile or embedded systems.

The rest of this paper is organized as follows. Section 2 discusses
the characteristics of flash memory and their impact on disk-based
database servers, and then presents the design objectives of the stor-
age subsystem we propose. Section 3 describes the basic concepts
and the design of the in-page logging (IPL) scheme. In Section 4,
we analyze the performance of a traditional disk-based database
server with the TPC-C benchmark, and demonstrate the potential
of the in-page logging for considerable improvement of write per-
formance through a simulation study. Section 5 discusses how the
basic IPL design can be extended to support transactional database
recovery. Lastly, Section 6 surveys the related work, and Section 7
summarizes the contributions of this paper.

2. DESIGN PRINCIPLES
In this section, we describe the key characteristics of flash mem-

ory that distinguish itself from magnetic disk drives, and elaborate
on how they would affect the performance of traditional disk-based
database servers. We then provide the design principles for new
flash-based database servers.

2.1 Characteristics of Flash Memory

2.1.1 No In-Place Update
Most traditional database systems assume magnetic disks as the

secondary storage media and take advantage of efficient updates of
data items by overwriting them in place. On the other hand, with
flash memory, no data item (or a sector containing the data item)
can be updated in place just by overwriting it. In order to update
an existing data item, a time-consuming erase operation must be
performed before overwriting. To make it even worse, the erase
operation cannot be performed selectively on the particular data
item or sector, but can only be done for an entire block of flash
memory called erase unit containing the data item, which is much
larger than a sector (typically 16 KBytes or 128 KBytes). Since
every update request will cause an erase operation followed by a
write, the effective update performance may degrade significantly
on database servers with a flash-based storage system.

Consequently, in order to overcome the erase-before-write limi-
tation of flash memory, it is essential to reconsider the current de-
sign of storage subsystems and reduce the requests of an erase op-
eration to the minimum so that the overall performance will not be
impaired.

2.1.2 No Mechanical Latency
Flash memory is a purely electronic device and thus has no me-

chanically moving parts like disk heads in a magnetic disk drive.
Therefore, flash memory can provide uniform random access speed.
Unlike magnetic disks whose seek and rotational delay often be-
comes the dominant cost of reading or writing a sector, the time
to access data in flash memory is almost linearly proportional to
the amount of data irrespective of their physical locations in flash
memory. 1

The ability of flash memory to quickly perform a sector read
or a sector (clean) write located anywhere in flash memory is one
of the key characteristics we can take advantage of. In fact, this

1Even though it takes a rather long time for NAND flash to read out
the first data byte compared to NOR flash because of the resistance
of the NAND cell array, this time is still much shorter than the seek
time for a magnetic disk by several orders of magnitude [15].

56



brings new opportunities for more efficient design of flash-based
database server architectures (e.g., non-sequential logging with no
performance penalty). We will show how this property of flash
memory can be exploited in our design of in-page logging.

2.1.3 Asymmetric Speed of Read/Write
The read and write speed of flash memory is asymmetric, simply

because it takes longer to write (or inject charge into) a cell until
reaching a stable status than to read the status from a cell. As is
shown in Table 1, the read speed is typically at least twice faster
than write speed. On the other hand, most existing software sys-
tems with magnetic disks implicitly assume that the speed of read
and write operations is almost the same. Not surprisingly, there
is little work targeted at the principles and algorithms for storage
media with asymmetric speed of read and write operations.

This property of asymmetric speed makes us review many exist-
ing techniques for DBMS implementation. We ultimately realize
that it is critical to find ways to reduce write operations (and erase
operations as a result of that), even though it increases the number
of read operations, as long as the overall performance improves.

2.2 Problems with Conventional Designs
Most disk-based database systems rely on a paged I/O mech-

anism for database update and buffer management and take ad-
vantage of sequential accesses given the hardware characteristics
of disk storage media composed of sectors, tracks and cylinders.
One of the immediate implications is that even an update of a sin-
gle record will cause an entire page (typically of 4 or 8 KBytes)
containing the record to be overwritten. If the access pattern to
database records is random and scattered, and the update granu-
larity is small (as is often observed in the OLTP applications), the
aggregate amount of data to be overwritten is likely to be much
larger than the actual amount of data to be updated. Nonetheless,
most disk-based database systems are still capable of dealing with
such frequent updates, as is mentioned before, by overwriting them
in place.

Suppose all the magnetic disks are replaced by flash memory in
the computing platform which a conventional disk-based database
system runs on. If the database system insists on updating data
items in place, then, due to the erase-before-write limitation of flash
memory, each update can only be carried out by erasing an entire
erase unit after reading its content to memory followed by writ-
ing the updated content back to the erase unit. This will obviously
lead to high update latency due to the cost of frequent erase opera-
tions as well as an increased amount of data to read from and write
to flash memory. Moreover, at the presence of hot data items re-
peatedly updated, this would shorten the life span of flash memory,
because an erase unit can be put through a finite number of erase
cycles (typically up to 100,000 times) before becoming statistically
unreliable.

Most flash memory devices or host systems adopt a process called
wear leveling within the device themselves or in the software layers
in order to ensure that erase cycles are evenly distributed across the
entire segment of flash memory so that the life span of flash mem-
ory is prolonged. For example, a log-based flash file system ELF
achieves wear leveling by creating a new sequential log entry for
each write operation. Thus, flash memory is used sequentially all
the way through, only returning to previously used sectors after all
of the sectors have been written to at least once [5]. Since an up-
date is performed by writing the content into a new sector different
from the current sector it was read from, an update does not require
an erase operation as long as a free (i.e., erased) sector is avail-
able. This sequential logging approach, however, optimizes write

performance to the detriment of read performance to the extent that
the overall performance of transactional database processing may
not be actually improved [9]. In addition, this approach tends to
consume free sectors quite rapidly, which in turn requires frequent
garbage collections to reclaim obsolete sectors to the pool of erased
sectors.

Under either of these two approaches, namely in-place updating
and sequential logging, the average latency of an update operation
increases due to frequent execution of costly erase operations. This
may become the major bottleneck in the overall performance of a
database server particularly for write-intensive workload.

2.2.1 Disk-Based Server Performance
To make the points raised above more acute, we ran a commer-

cial database server on two computer systems that were identical
except that one was equipped with a magnetic disk drive and the
other with a flash memory storage device instead of the disk drive.
In each case of the experiment, we executed an SQL query that ac-
cessed the same base table differently - sequentially or randomly,
and measured the response time of the query in the wall clock time.
Table 2 summarizes the read and write performance of the mag-
netic disk drive and the flash memory device, respectively, in terms
of the random-to-sequential performance ratio.

Random-to-Sequential Ratio
Media Read workload Write workload

Magnetic Disk† 4.3 ∼ 12.3 4.5 ∼ 10.0
NAND Flash‡ 1.1 ∼ 1.2 2.4 ∼ 14.2

†Disk: Seagate Barracuda 7200.7 ST380011A
‡NAND Flash: Samsung K9WAG08U1A 16 Gbits SLC NAND

Table 2: DBMS Performance: Sequential vs. Random

In the case of a magnetic disk drive, the random-to-sequential
ratio was fairly high for both read and write queries. This result
should not be surprising, given the high seek and rotational latency
of magnetic disks. In the case of a flash memory device, the result
was mixed and indeed quite surprising. The performance of a read
query was insensitive to access patterns, which can be perfectly ex-
plained by the no-mechanical-latency property of flash memory. In
contrast, the performance of a write query was even more sensitive
to access patterns than the case of disk. This is because, with a ran-
dom access pattern, each update request is very likely to cause an
erase unit containing the data page being updated to be copied else-
where and erased. This clearly demonstrates that database servers
would potentially suffer serious update performance degradation if
they ran on a computing platform equipped with flash memory in-
stead of magnetic disks. See Section 4.1 for more detail of this
experiment.

2.3 Design Manifesto
When designing a storage subsystem for flash-based database

servers, we assume that the memory hierarchy of target computing
platforms consists of two levels: volatile system RAM and non-
volatile NAND flash memory replacing magnetic disks. Guided by
the unique characteristics of flash memory described in this section,
the design objectives of the storage subsystem are stated as follows.

• Take advantage of new features of flash memory such as uni-
form random access speed and asymmetric read/write speed.
The fact that there is no substantial penalty for scattered ran-
dom accesses allows us more freedom in locating data ob-
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jects and log records across the flash-based storage space. In
other word, log records can be scattered all over flash mem-
ory and need not be written sequentially.

• Overcome the erase-before-write limitation of flash mem-
ory. In order to run a database server efficiently on the target
computing platforms, it is critical to minimize the number of
write and/or erase requests to flash memory. Since the read
bandwidth of flash memory is much faster than that of write,
we may need to find ways to avoid write and erase opera-
tions even at the expense of more read operations. This strat-
egy can also be justified by an observation that the fraction
of writes among all IO operations increases, as the memory
capacity of database servers grows larger [9].

• Minimize the changes made to the overall DBMS architec-
tures. Due to the modular design of contemporary DBMS
architectures, the design changes we propose to make will be
limited to the buffer manager and storage manager.

3. IN-PAGE LOGGING APPROACH
In this section, we present the basic concepts of the In-Page Log-

ging (IPL) approach that we propose to overcome the problems of
the conventional designs for disk-based database servers. We then
present the architectural design and the core operations of the In-
Page Logging. In Section 5, we will show how the basic design of
IPL can be extended to provide transactional database recovery.

3.1 Basic Concepts
As described in Section 2.2, due to the erase-before-write lim-

itation of flash memory, updating even a single record in a page
results in invalidating the current page containing the record, and
writing a new version of the page into an already-erased space in
flash memory, which leads to frequent write and erase operations.
In order to avoid this, we propose that only the changes made to a
page are written (or logged) to the database on the per-page basis,
instead of writing the page in its entirety.

Like conventional sequential logging approaches (e.g., log-struct-
ured file system [23]), all the log records might be written sequen-
tially to a storage medium regardless of the locations of changes in
order to minimize the seek latency, if the storage medium were a
disk. One serious concern with this style of logging, however, is
that whenever a data page is to be read from database, the current
version of the page has to be re-created by applying the changes
stored in the log to the previous version of the page. Since log
records belonging to the data page may be scattered and can be
found only by scanning the log, it may be very costly to re-create
the current page from the database.2

In contrast, since flash memory comes with no mechanical com-
ponent, there is no considerable performance penalty arising from
scattered writes [8], and there is no compelling reason to write log
records sequentially either. Therefore, we co-locate a data page
and its log records in the same physical location of flash memory,
specifically, in the same erase unit. (Hence we call it In-Page log-
ging.) Since we only need to access the previous data page and
its log records stored in the same erase unit, the current version
of the page can be re-created efficiently under the IPL approach.
Although the amount of data to read will increase by the number
of log records belonging to the data page, it will still be a sensi-
ble trade-off for the reduced write and erase operations particularly

2LGeDBMS, recently developed for embedded systems with flash
memory, adopted the sequential logging approach for updating data
pages [17].

considering the fact that read is typically at least twice faster than
write for flash memory. Consequently, the IPL approach can im-
prove the overall write performance considerably.

Figure 1: From Update-In-Place to In-Page Logging

Figure 1 illustrates how the IPL approach is evolved from the
traditional update-in-place and log-structured approaches. While
logging is a consequential decision due to the erase-before-write
(or no update-in-place) limitation of flash memory, in-page logging
is to take advantage of the desirable properties (i.e., no mechanical
latency and fast reads) of flash memory.

3.2 The Design of IPL
As is mentioned in the design manifesto (Section 2.3), the main

design changes we propose to make to the overall DBMS archi-
tecture are limited to the buffer manager and storage manager. In
order to realize the basic concepts of the in-page logging with the
minimal cost, logging needs to be done by the buffer manager as
well as the storage manager. See Figure 2 for the illustration of the
IPL design.

Figure 2: The Design of In-Page Logging

Whenever an update is performed on a data page, the in-memory
copy of the data page is updated just as done by traditional database
servers. In addition, the IPL buffer manager adds a physiological
log record on the per-page basis to the in-memory log sector asso-
ciated with the in-memory copy of the data page. An in-memory
log sector can be allocated on demand when a data page becomes
dirty, and can be released when the log records are written to a log
sector on the flash memory. The log records in an in-memory log
sector are written to flash memory when the in-memory log sector
becomes full or when a dirty data page is evicted from the buffer
pool. The effect of the in-memory logging is similar to that of write
caching [22], so that multiple log records can be written together
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at once and consequently frequent erase operations can be avoided.
When a dirty page is evicted, it is not necessary to write the content
of the dirty page back to flash memory, because all of its updates
are saved in the form of log records in flash memory. Thus, the
previous version of the data page remains intact in flash memory,
but is just augmented with the update log records.

When an in-memory log sector is to be flushed to flash memory,
its content is written to a flash log sector in the erase unit which
its corresponding data page belongs to, so that the data page and
its log records are physically co-located in the same erase unit. To
do this, the IPL storage manager divides each erase unit of flash
memory into two segments – one for data pages and the other for
log sectors. For example, as shown in Figure 2, an erase unit of
128 KBytes (commonly known as large block NAND flash) can be
divided into 15 data pages of 8 KBytes each and 16 log sectors of
512 bytes each. (Obviously, the size of an in-memory log sector
must be the same as that of a flash log sector.) When an erase unit
runs out of free log sectors, the IPL storage manager merges the
data pages and log sectors in the erase unit into a new erase unit.
This new merge operation proposed as an internal function of IPL
will be presented in Section 3.3 in more detail.

This new logic for update requires the redefinition of read oper-
ation as well. When a data page is to be read from flash memory
due to a page fault, the current version of the page has to be com-
puted on the fly by applying its log records to the previous version
of the data page fetched from flash memory. This new logic for
read operation clearly incurs additional overhead for both IO cost
(to fetch a log sector from flash memory) and computational cost
(to compute the current version of a data page). As is pointed out
in Section 3.1, however, this in-page logging approach will even-
tually improve the overall performance of the buffer and storage
managers considerably, because write and erase operations will be
requested less frequently.

The memory overhead is another factor to be examined for the
design of IPL. In the worst case in which all the pages in the buffer
pool are dirty, an in-memory log sector has to be allocated for each
buffer page. In the real-world applications, however, an update to
a base item is likely to be quickly followed by updates to the same
or related items (known as update locality) [1], and the average
ratio of dirty pages in buffer is about 5 to 20 percent [14]. With
such a low ratio of dirty pages, if a data page is 8 KBytes and
an in-memory log sector is 512 bytes, then the additional memory
requirement will be no more than 1.3% of the size of the buffer
pool. Refer to Section 4.2.2 for the update pattern of the TPC-C
benchmark.

3.3 Merge Operation
An in-memory log sector can store only a finite number of log

records, and the content is flushed into a flash log sector when it
becomes full. Since there are only a small number of log sectors
available in each erase unit of flash memory, if data pages fetched
from the same erase unit get updated often, the erase unit may run
out of free log sectors. It is when merging data pages and their log
sectors is triggered by the IPL storage manager. If there is no free
log sector left in an erase unit, the IPL storage manager allocates
a free erase unit, computes the new version of the data pages by
applying the log records to the previous version, writes the new
version into the free erase unit, and then erases and frees the old
erase unit. The algorithmic description of the merge operation is
given in Algorithm 1.

The cost of a merge operation is clearly much higher than that
of a basic read or write operation. Specifically, the cost of a merge
operation cmerge will amount to (kd +kl)× cread +kd× cwrite +

Algorithm 1: Merge Operation

Input: Bo: an old erase unit to merge
Output: B: a new erase unit with merged content

procedure Merge(Bo, B)
allocate a free erase unit B1:

for each data page p in Bo do2:

if any log record for p exists then3:

p′← apply the log record(s) to p4:

write p′ to B5:

else
write p to B6:

endif
endfor
erase and free Bo7:

cerase for IO plus the computation required for applying log records
to data pages. Here, kd and kl denote the number of data sectors
and log sectors in an erase unit, respectively. Note that a merge op-
eration is requested only when all the log sectors are consumed on
an erase unit. This actually helps avoid frequent write and erase op-
erations that would be requested by in-place updating or sequential
logging method of traditional database servers.

When a merge operation is completed for the data pages stored
in a particular erase unit, the content of the erase unit (i.e., the
merged data pages) is physically relocated to another erase unit
in flash memory. Therefore, the logical-to-physical mapping of
the data pages should be updated as well. Most flash memory
devices store the mapping information persistently in flash mem-
ory, which is maintained as meta-data by the flash translation layer
(FTL) [16, 18]. Note again that the mapping information needs
to be updated only when a merge operation is performed, and the
performance impact will be even less under the IPL design than
traditional database servers that require updating the mapping in-
formation more frequently for all write operations.

4. PERFORMANCE EVALUATION
In this section, we analyze the performance characteristics of a

conventional disk-based database server to expose the opportunities
and challenges posed by flash memory as a replacement medium
for magnetic disk. We also carry out a simulation study with the
TPC-C benchmark to demonstrate the potential of the IPL approach
for considerable improvement of write performance.

4.1 Disk-Based Server Performance
In this section, we analyze the performance characteristics of a

conventional disk-based database server with respect to different
types of storage media, namely, magnetic disk and flash memory.

4.1.1 Setup for Experiment
We ran a commercial database server on two Linux systems, each

with a 2.0 GHz Intel Pentium IV processor and 1 GB RAM. The
computer systems were identical except that one was equipped with
a magnetic disk drive and the other with a flash memory storage
device instead of the disk drive. The model of the disk drive was
Seagate Barracuda 7200.7 ST380011A, and the model of the flash
memory device was M-Tron MSD-P35 [11] (shown in Figure 3),
which internally deploys Samsung K9WAG08U1A 16 Gbits SLC
NAND flash. Both storage devices were connected to the computer
systems via an IDE/ATA interface.

In order to minimize the interference by data caching and log-
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Read Query processing time (sec) Write Query processing time (sec)
Queries Disk Flash Queries Disk Flash

Sequential (Q1) 14.04 11.02 Sequential (Q4) 34.03 26.01
Random (Q2) 61.07 12.05 Random (Q5) 151.92 61.76
Random (Q3) 172.01 13.05 Random (Q6) 340.72 369.88

Table 3: Read and Write Query Performance of a Commercial Database Server

Figure 3: MSD-P35 NAND Flash-based Solid State Disk

ging, the commercial database server was set to access both types
of storage as a raw device, and no logging option was chosen so that
most of IO activities were confined to data pages of a base table and
index nodes. The size of a buffer pool was limited to 20 MBytes,
and the page size was 8 KBytes by default for the database server.

A sample table was created on each of the storage devices, and
then populated with 640,000 records of 650 bytes each. Since each
data page (of 8 KBytes) stored up to 10 records, the table was com-
posed of 64,000 pages. In case of the flash memory device, this
table was spanned over 4,000 erase units, because each 128 KByte
erase unit had sixteen 8 KByte data pages in it. The domain of the
first two columns of the table was integer, and the values of the first
two columns were given by the following formulas

col1 = �record id/160�
col2 = record id (mod 160)

so that we could fully control data access patterns through B+-tree
indices created on the first two columns.

4.1.2 Read Performance
To compare the read performance of magnetic disk and flash

memory, we ran the following queries Q1, Q2 and Q3 on each of
the two computer systems. Q1 scans the table sequentially; Q2 and
Q3 read the table randomly. The detailed description of the queries
is given below.

Q1: scan the entire table of 64,000 pages sequentially.
Q2: pick 16 consecutive pages randomly and read them to-

gether at once; repeat this until each and every page of
the table is read only once.

Q3: read a page each time such that two pages read in se-
quence are apart by 16 pages in the table. The id’s
of pages read by this query are in the following order:
0, 16, 32, . . . , 63984, 1, 17, 33, . . ..

The response times of the queries measured in the wall clock
time are presented in Table 3. In the case of disk, the response
time increased as the access pattern changed from sequential (Q1)

to quasi-random (Q2 and Q3). Given the high seek and rotational
latency of magnetic disks, this result was not surprising, because
the more random the access pattern is, the more frequently the disk
arm has to move. On the other hand, in the case of flash memory,
the amount of increase in the response times was almost negligible.
This result was also quite predictable, because flash memory has
no mechanically moving parts nor mechanical latency.

4.1.3 Write Performance
To compare the write performance of magnetic disk and flash

memory, we ran the following queries Q4, Q5 and Q6 on each of
the two computer systems. Q4 updates all the pages in the table
sequentially; Q5 and Q6 update all the pages in the table in a ran-
dom order but differently. The detailed description of the queries is
given below.

Q4: update each page in the entire table sequentially.
Q5: update a page each time such that two pages updated in

sequence are apart by 16 pages in the table. The id’s of
pages updated by this query are in the following order:
0, 16, 32, . . . , 63984, 1, 17, 33, . . ..

Q6: update a page each time such that two pages updated
in sequence are apart by 128 pages in the table. The
id’s of pages updated by this query are in the following
order: 0, 128, 256, . . . , 63872, 1, 129, 257, . . ..

The response times of the queries measured in the wall clock
time are presented in Table 3. In the case of disk, the trend in
the write performance was similar to that observed in the read per-
formance. As the access pattern became more random, the query
response time became longer due to prolonged seek and rotational
latency.

In the case of flash memory, however, a striking contrast was ob-
served between the read performance and the write performance.
As the access pattern changed from sequential to random, the up-
date query response time became longer, and it was actually worse
than that of disk for Q6. As is discussed previously, the dominant
factor of write performance for flash memory is how often an erase
operation has to be performed.

In principle, each and every update operation can cause an erase
unit to be copied elsewhere and erased. In practice, however, most
of flash memory products are augmented with a DRAM buffer to
avoid as many erase operations as possible. The MSD-P35 NAND
flash solid state disk comes with a 16 MByte DRAM buffer, each
one MByte segment of which can store eight contiguous erase units.
If data pages are updated sequentially, they can be buffered in a
DRAM buffer segment and written to the same erase unit at once.
This was precisely what happened to Q4. Due to the sequential or-
der of updates, each of the 4000 erase units of the table was copied
and erased only once during the processing of Q4.

On the other hand, Q5 and Q6 updated data pages in a random
order but differently. Each pair of pages updated by Q5 in sequence
were apart by 16 pages, which is equivalent to an erase unit. Since
a total of eight consecutive erase units are mapped to a DRAM
buffer segment of one MByte, an erase operation was requested ev-
ery eight page updates (i.e., a total of 64000/8 = 8000 erases).
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The pages updated by Q6 were apart from the previous and the fol-
lowing pages by 128 pages, which is equivalent to a DRAM buffer
segment of one MByte. Consequently, each page updated by Q6

caused an erase operation (i.e., a total of 64000 erases). This is the
reason why Q6 took considerably more time than Q5, which in turn
took more than Q4.

4.2 Simulation with TPC-C Benchmark
In this section, we examine the write performance of the IPL ap-

proach and compare it with that of a disk-based database server for
more realistic workload. We used a reference stream of the TPC-C
benchmark, which is a representative workload for on-line trans-
action processing, and estimated the performance of a server man-
aging database stored in flash memory, with and without the IPL
features. As pointed out in Section 3, the IPL read operation may
incur additional overhead to fetch log sectors from flash memory.
However, due to its superior read performance of flash memory ir-
respective of access patterns, as shown in Table 3, we expect that
the benefit from the improved write performance will outweigh the
increased cost of read operations.

4.2.1 TPC-C Trace Generation
To generate a reference stream of the TPC-C benchmark, we

used a workload generation tool called Hammerora [7]. Ham-
merora is an open source tool written in Tcl/Tk. It supports TPC-C
version 5.1, and allows us to create database schemas, populate
database tables of different cardinality, and run queries from a dif-
ferent number of simulated users.

We ran the Hammerora tool with the commercial database server
on a Linux platform under a few different configurations, which is a
combination of the size of database, the number of simulated users,
and the size of a system buffer pool. When the database server ran
under each configuration, it generated (physiological) log records
during the course of query processing. In our experiments, we used
the following traces to simulate the update behaviors of a database
server with and without the IPL feature.

100M.20M.10u: 100 MByte database, 20 MByte buffer
pool, 10 simulated users

1G.20M.100u: 1 GByte database, 20 MByte buffer
pool, 100 simulated users

1G.40M.100u: 1 GByte database, 40 MByte buffer
pool, 100 simulated users

Note that each of the traces contained update log records only,
because the database server did not produce any log record for read
operations. Nonetheless, these traces provided us with enough in-
formation, as our empirical study was focused on analyzing the
update behaviors of a database server with flash memory.

4.2.2 Update Pattern of the TPC-C Benchmark
First, we examined the lengths of log records. Since the num-

ber of log records kept in memory by the IPL buffer manager is
determined by the average length of log records and the size of
a flash sector, which is typically 512 bytes, the average length of
log records is an indicator suggesting how quickly an in-memory
log sector becomes full and gets written to flash memory. Table 4
shows the average length of log records by the types of opera-
tions for the 1G.20M.100u trace. Since the average length is
no longer than 50 bytes, a log sector of 512 bytes can store up to
10 log records on average. This implies that an in-memory log sec-
tor will not be flushed to flash memory until its associated data
page gets updated 10 times on average, unless the data page is
evicted by a buffer replacement mechanism. In addition to the three
types of physiological log records, the traces contain log records of

physical page writes. For example, the 1G.20M.100u trace con-
tained 625527 log records of physical page writes in addition to the
784278 physiological log records.

Operation occurrences avg. length

Insert 86902 (11.08%) 43.5
Delete 284 (0.06%) 20.0
Update 697092 (88.88%) 49.4

Total 784278 (100.00%) 48.7

Table 4: Update Log Statistics of the 1G.20M.100u Trace

Second, we examined the log reference locality by counting the
number of log records that updated individual data pages. As shown
in Figure 4(a), the distribution of update frequencies was highly
skewed. We also examined the distribution of references in terms
of how frequently individual data pages were physically written
to the database. Note that the frequency distribution of physical
page writes is expected to be correlated to the log reference local-
ity above, but may be slightly different, because a data page cached
in the buffer pool can be modified multiple times (generating mul-
tiple log records), until it is evicted and written to the database. We
obtained the page write count for each data page from the traces,
which contained the information of individual data pages being
written to database, in addition to the update log records. Fig-
ure 4(b) shows the distribution of the frequency of physical page
writes for the 2000 most frequently updated pages in the 1G.-
20M.100u trace. The distribution of the write frequencies is also
clearly skewed. In this case, the 2000 most frequently written pages
(1.6% of a total of 128K pages in the database) were written 29%
of the times (637823 updates).3 We also derived the physical erase
frequencies by mapping each page to its corresponding erase unit.
Figure 4(c) shows the erase frequencies of erase units for the same
1G.20M.100u trace.

Third, we examined the temporal locality of data page updates
by running a sliding window of length 16 through each trace of
physical write operations. We counted the number of distinct pages
within individual windows, and averaged them across the entire
span of the trace. For the 1G.20M.100u trace, the probability
that 16 consecutive physical writes would be done for 16 distinct
data pages was 99.9%. We can derive the similar analysis for erase
units. The probability that 16 consecutive physical writes would be
done for 16 distinct erase units was 93.1% (i.e., on average 14.89
out of 16). Due to this remarkable lack of temporal locality, the
update patterns of the TPC-C benchmark are expected to cause a
large number of erase operations with flash memory.

4.2.3 Write Performance Estimation
In order to evaluate the impact of the IPL design on the perfor-

mance of flash-based database servers, we implemented an event-
driven simulator modeling the IPL buffer and storage managers as
described in Section 3. This simulator reads log records from the
TPC-C traces described in Section 4.2.1, and mimics the opera-
tions that would be carried out by the IPL managers according to
the types of log records. The simulator was implemented in the C
language, and its pseudo-code is shown in Algorithm 2.

There are four types of log records in the traces: three types of
physiological log records (namely, insert, delete, and update) plus
log records for physical writes of data pages. When a physiological

3This trend of skewedness appears to coincide with the TPC-C
characterization of DB2 UDB traces [4]. The DB2 UDB traces
contained both read and write references.
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Figure 4: TPC-C Update Locality in terms of Physical Writes (1G.20M.100u Trace)

Algorithm 2: Pseudo-code of the IPL Simulator

Input: {Li}: a trace from the TPC-C benchmark

procedure Simulate({Li})
for each log record Li do1:

if Li.opcode ∈ {insert, delete, update} then2:

if log count(Li .pageid) ≥ τs then3:

generate a sector-write event4:

log count(Li .pageid)← 05:

endif
log count(Li.pageid)++6:

else
// Li is a log record of physical page write
generate a sector-write event7:

log count(Li.pageid)← 08:

endif
endfor
event handler SectorWrite({Li})
eid← erase unit id of the sector9:

if logsector count(eid) ≥ τe then10:

global merge count++11:

logsector count(eid)← 012:

endif
logsector count(eid)++13:

global sector write count++14:

log record is accepted as input, the simulator mimics adding the log
record into the corresponding in-memory log sector by increment-
ing the log record counter of the particular sector.4 If the counter
of the in-memory log sector has already reached the limit (denoted
by τs in the pseudo-code), then the counter is reset, and an internal
sector-write event is created to mimic flushing the in-memory log
sector to a flash log sector (Lines 3 to 5).

When a log record of physical page write is accepted as input,
the simulator mimics flushing the in-memory log sector of the page
being written to the database by creating an internal sector-write
event (Lines 7 to 8). Note that the in-memory log sector is flushed
even when it is not full, because the log record indicates that the
corresponding data page is being evicted from the buffer pool.

Whenever an internal sector-write event is generated, the sim-
ulator increments the number of consumed log sectors in the cor-
responding erase unit by one. If the counter of the consumed log
sectors has already reached the limit (denoted by τe in the pseudo-

4Since the traces do not include any record of physical page reads,
we can not tell when the page is fetched from the database, but it
is inferred from the log record that the page referenced by the log
record must have been fetched before the reference.

code), then the counter is reset, and the simulator increments the
global counter of merges by one to mimic the execution of a merge
operation and to keep track of total number of merges (Lines 10
to 13). The simulator also increments the global counter of sector
writes by one to keep track of total number of sector writes.

Trace No of update logs No of sector writes

100M.20M.10u 79136 46893
1G.40M.100u 784278 594694
1G.20M.100u 785535 559391

Table 5: Statistics of Log Records and Sector Writes

When we ran the IPL simulator through each of the traces, we in-
creased the size of the log region in each erase unit from 8 KBytes
to 64 KBytes by 8 KBytes to observe the impact of the log re-
gion size on the write performance. The IPL simulator returns two
counters at the completion of analyzing a trace, namely, the total
number of sector writes and the total number of erase unit merges.
The number of sector writes is determined by the update reference
pattern in a given trace and the buffer replacement by the database
server, independently of the size of a log region in the erase units.
Table 5 summarizes the total number of references in each trace and
the number of sector writes reported by the IPL simulator for each
trace. Note that, even with the relatively small sizes chosen for the
buffer pool, which causes in-memory log sectors to be flushed pre-
maturely, the number of sector writes was reduced by a non-trivial
margin compared with the number of update references.
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On the other hand, the number of merges is affected by the size of
a log region. Figure 5 shows the number of merges for each of the
three traces, 100M.20M.10u,1G.20M.100u and 1G.40M.100u,
with a varying size of the log region. As the size of the log region
increased, the number of merge operations decreased dramatically
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at the cost of increased storage space for database. As we observed
in Figure 4(a), the distribution of update frequencies was so skewed
that a small fraction of data pages were updated much more fre-
quently than the rest, before they were evicted from the buffer pool.
This implies that the erase units containing the hot pages exhausted
their log regions rapidly, and became prone to merge operations
very often. For the reason, the more flash log sectors were added
to an erase unit, the less frequently the erase unit was merged (i.e.,
copied and erased), because more updates were absorbed in the log
sectors of the erase unit.

To understand the performance impact of the reduced merge op-
erations more realistically, we used the following formula to esti-
mate the time that an IPL-enabled database server would spend on
performing the insert, delete and update operations in the TPC-C
traces.

tIPL = (# of sector writes)× 200μs

+ (# of merges) × 20ms

The average time (200μs) spent on writing a flash sector is from
Table 1.5 The average time (20 ms) spent on merging an erase unit
can be calculated from Table 1 by adding the average times taken
for reading, writing and erasing an erase unit.6

Figure 6(a) shows the write time estimated by the tIPL formula
for each of the three traces. The performance benefit from the in-
creased number of log sectors was evident, but the space overhead,
as shown in Figure 6(b), was not trivial. As the price of flash mem-
ory is expected to drop steadily, however, we expect that the in-
crease throughput will outweigh the increased cost for storage.
5Writing a 512-byte sector takes the same amount of time as writ-
ing a 2-KByte block on large block NAND flash devices.
6This average time of merge coincides with the measurement given
by Birrel et al. [2].

We also examined how the performance of a database server
with the IPL features was affected by the capacity of the system
buffer pool. To do this, we generated three additional traces called
1G.60M.100u, 1G.80M.100u and 1G.100M.100u by run-
ning the database server with a buffer pool of different capacities,
namely, 60 MB, 80 MB and 100 MB. Figures 7(a) and 7 (b) show
the total number of sector writes and the total number of merges
with a varying capacity of the buffer pool. Not surprisingly, as the
buffer capacity increased, the total number of pages replaced by
the buffer manager decreased. Consequently, Figure 7(c) shows
the similar trend in the estimated write time, as the buffer capacity
increases.

In addition, Figure 7(c) shows the expected write time that a con-
ventional database server would spend without the IPL features.
The write time of this case was estimated by the following formula,

tConv = (α× # of page writes)× 20ms

where the parameter α denotes the probability that a page write
will cause the container erase unit to be copied and erased. In Fig-
ure 7(c), the value of α was set to 90% and 50%. (Recall that in
Section 4.2.2 the probability of 16 consecutive physical writes be-
ing done to 16 distinct erase units was 93.1%.) Even when the
value of α was arbitrarily adjusted from 90% to 50%, the write per-
formance of the IPL server was an order of magnitude better that
that of the conventional server. Note that the y-axis of Figure 7(c)
is in the logarithmic scale.

4.3 Summary
High density flash memory has been successfully adopted by

personal media players, because flash memory yields excellent read
and write performance for sequential access patterns. However, as
shown in Table 3, the write performance of flash memory dete-
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riorates drastically, as the access pattern becomes random, which
is quite common for the OLTP-type applications. The simulation
study reported in this section demonstrates that the IPL strategy can
help database servers overcome the limitations of flash memory and
achieve the best attainable performance.

5. SUPPORT FOR RECOVERY
In this section, we discuss how the basic IPL design can be aug-

mented to support transactional database recovery. The IPL buffer
and storage managers, as described in Section 3, rely on logging
updates temporarily in main memory and persistently in flash mem-
ory in order to overcome the erase-before-write limitation of flash
memory. The update logs of IPL can also be used to realize a lean
recovery mechanism for transactions with the minimal overhead
during the normal processing such that the cost of system recovery
can be reduced considerably. This will help minimize the memory
foot-print of database servers particularly for mobile or embedded
systems.

5.1 Additional Logging and Data Structure
For the support of transactional database recovery, it is necessary

to adopt the conventional system-wide logging maintained typi-
cally in a separate storage, for keeping track of the start and end
(i.e., commit or abort) of transactions. Like the transaction log of
the Postgres No-Overwrite Storage [25], the only purpose of this
system-wide logging is to determine the status of transactions at
the time of system failure during the recovery. Since no additional
log records (other than those by the in-page logging) are created
for updates, the overall space and processing overhead is no worse
than that of conventional recovery systems.

In addition to the transaction log, a list of dirty pages in the buffer
pool can be maintained in memory during the normal processing,
so that a committing transaction or an aborting transaction (not by
the system failure) can quickly locate the in-memory log sectors
containing the log records added by the transaction.

5.2 Transaction Commit
Most disk-based database systems adopt a no-force buffer man-

agement policy for performance reasons [13]. With a force policy,
all the data pages modified by a committing transaction would have
to be forced out to disk, which might often lead to random disk ac-
cesses for an increased volume of data rather than just flushing the
log tail sequentially to a stable storage. With a no-force policy,
only the log tail is forced to a stable storage. Consequently, how-
ever, data pages resident on disks may not be current. Thus, when a
system failure occurs, REDO recovery actions should be performed
for committed transactions at the system restart.

To adopt a no-force policy for the IPL design, the corresponding
in-memory log sectors need to be written to flash memory when a
transaction commits. Note that, in the basic IPL design as described
in Section 3.2, an in-memory log sector is written to flash memory
when it becomes full or its associated data page is evicted from
the buffer pool. In addition to that, for the sake of transactional
recovery, the IPL buffer manager has to force out an in-memory
log sector to flash memory, if it contains at least one log record of
a committing transaction.

Unlike a log tail sequentially written to a stable storage by disk-
based database systems, the IPL in-memory log sectors are written
to non-consecutive locations of flash memory, because they must be
co-located with their corresponding data pages. The access pattern
is thus expected to be random. With no mechanical latency of flash
memory, however, the cost of writing the in-memory log sectors to
flash memory will be just about the same as the cost of writing them

sequentially, and this process will cause no substantial performance
degradation at commit time.

We claim that, even with the no-force policy, the IPL design
does not require REDO actions explicitly for committed transac-
tions at the system restart. Rather, any necessary REDO action will
be performed implicitly as part of normal database processing, be-
cause the redefined IPL read applies log records on the fly to data
pages being fetched from flash memory, and all the changes made
by a committed transaction are available in the log records in flash
memory. In other words, under the IPL design, the materialized
database [13] consists not only of data pages but also of their cor-
responding log records.

5.3 Transaction Abort
When an individual transaction T aborts (not by a system fail-

ure), T ’s log records that still remain in the in-memory log sectors
can be located via the list of dirty pages maintained in memory, re-
moved from the in-memory log sectors, and de-applied to the cor-
responding data pages in the buffer pool. Some of T ’s log records,
however, may have already been written to flash log sectors by the
IPL buffer manager. To make the matter even more complicated,
the IPL merge operation described in Section 3.3 creates a new
version of data pages in an erase unit by applying the log records
to the previous version, and frees the old erase unit in flash mem-
ory. Since, when a merge is completed, the log records that were
stored in the old erase unit are abandoned, it would be impossible
to rollback the changes made by an aborting transaction without
providing a separate logging mechanism for UNDO actions.

To cope with this issue, we propose a selective merge operation
instead of the regular merge so that we can take advantage of the
in-page logging and simplify the UNDO recovery for aborted trans-
actions or incomplete transactions at the time of system crash. The
idea of the selective merge is simply to keep log records from be-
ing applied to data pages if the corresponding transactions are still
active when a merge is invoked. With this selective merge, we can
always rollback the changes made by uncommitted transactions just
by discarding their log records, because no changes by those trans-
actions are applied to any data page in flash memory until they
commit.

When a selective merge is invoked for a particular erase unit, the
IPL storage manager inspects each log record stored in the erase
unit, and performs a different action according to the status of the
transaction responsible for the log record. If the transaction is com-
mitted, then the log record is applied to a relevant data page. If the
transaction is aborted, then the log record is simply ignored. If the
transaction is still active, the log record is moved to the log sector in
a newly allocated erase unit. Obviously, when multiple log records
are moved to a new erase unit, they are compacted into the fewest
number of log sectors.

There is a concern, however, that may be raised when too many
log records need to be moved to a new erase unit. For example, if
all the transactions associated with the log records are still active,
then none of the log records will be dropped when they are moved
to a new erase unit. The problem in such a case is that the newly
merged erase unit is prone to another merge in the near future due to
the lack of free slots in the log sectors, which will cause additional
write and erase operations.

One way of avoiding such a thrashing behavior of the selective
merge is to allow an erase unit being merged to have overflow log
sectors allocated in a separate erase unit. When a selective merge
is triggered by an in-memory log sector being flushed to an erase
unit (say E), the IPL storage manager estimates what fraction of
log records would be carried over to a new erase unit. If the frac-
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Algorithm 3: Selective Merge Operation

Input: Bo: an old erase unit to merge
Output: B: a new erase unit with merged content

procedure Merge(Bo, B)
if carry-over-fraction > τ then1:

// the log sector is added to an overflow log area2:

return Bo as B3:

endif
allocate a free erase unit B4:

for each data page p in Bo do5:

if any committed log record for p exists then6:

p′← apply the committed log record(s) to p7:

write p′ to B8:

else
write p to B9:

endif
endfor
compact and write all active log records to B10:

erase and free Bo11:

tion is over a certain threshold value τ , the erase unit E remains
intact, but instead the in-memory log sector is written to a flash log
sector in a separate erase unit allocated as an overflow area. The al-
gorithmic description of the selective merge operation is presented
in Algorithm 3.

With the selective merge replacing the regular merge, it is not
necessary to explicitly perform UNDO actions for aborted or in-
complete transactions. Rather, any necessary UNDO action will
be performed implicitly as part of normal database processing by
preventing any change made by aborted or incomplete transactions
from being merged to data pages. Note that the log records by
aborted or incomplete transactions are not explicitly invalidated by
the IPL storage manager in order not to incur any unnecessary IO,
but instead dropped by selective merge operations during the nor-
mal processing, and eventually garbage-collected and erased.

5.4 System Restart
As described above, the IPL storage manager maintains data

pages and their log records in such a way that a consistent database
state with respect to all the committed transactions can always be
derived from data pages and log records. Consequently, both the
REDO and UNDO actions can be performed implicitly, just as they
are done during the normal processing.

When the database server is recovered from a system failure, the
transaction log (described in Section 5.1) is examined to determine
the status of transactions at the time of the failure. For a transaction
whose commit or abort record appears in the transaction log, no
recovery action needs to be performed. For a transaction that was
active at the time of failure, an abort record should be added to
the transaction log, so that any change made by this transaction
can be rolled back by the subsequent processing of the IPL storage
manager.

6. RELATED WORK
Most commercial database systems rely on the in-place updates

and the no-force buffer replacement. Without the no-force policy,
the commit-time overhead may be high, because scattered random
writes are required to propagate all the changes made by each and
every committing transaction. With the no-force policy, on the
other hand, whenever a transaction commits, the log tail has to

be written to a stable storage in order to ensure the durability of
transactions. Since the log tail is always written in the sequential
manner, the commit-time overhead will be minimal even with mag-
netic disk drives with high mechanical latency. Under the recovery
mechanism supported by the IPL scheme (Section 5), when a trans-
action commits, its log records still cached in the buffer pool are
written to corresponding log sectors in flash memory in the scat-
tered fashion. Due to no mechanical latency of flash memory, how-
ever, small random writes can be processed efficiently as long as
costly erase operations are not involved [8]. Since the IPL scheme
can keep the the number of merge (i.e., copy and erase) operations
to the minimum, the commit-time overhead is likely to be still low.

As large and cheap magnetic disks were available in the mid
1990s, the concept of “no-overwrite storage manager” was pro-
posed for Postgres [25]. The main idea was, instead of overwriting
data in disk, to store the historical delta records of updates in addi-
tion to the original contents of data. By taking the no-overwrite
policy, it can travel the history of changes for a data item, and
more importantly, recover from database failures very quickly. In
this respect, it is similar to our in-page logging. However, the no-
overwrite storage manager of Postgres must force to disk at com-
mit time all pages written by a transaction by random IO. There-
fore, it was retrospected that the no-overwrite storage would be-
come a viable storage option only with stable main memory (e.g.,
FeRAM) [26].

In the late 90s, PicoDBMS [3] was developed for EEPROM,
which was then the major storage media for Smartcard in the late
1990s. The main bottleneck of EEPROM is its write performance.
While the read time per word is about 60 ∼ 250 ns, the write
time per word is about 1 ∼ 5 ms. Since EEPROM allows over-
write unlike flash memory, PicoDBMS was built on the update-
in-place approach. If flash memory is used instead of EEPROM,
PicoDBMS will suffer the same performance degradation as the
traditional disk-based database servers (see Table 3). Besides, Pi-
coDBMS frequently uses pointer-based data accesses in order to
minimize the size of database, and to take advantage of the fast
read accesses of EEPROM. However, the read speed of NAND
flash memory is not as fast, compared with EEPROM. Therefore,
the intensive use of pointer-based data access will be another per-
formance bottleneck for flash-based systems.

Finally, we would like to discuss the limitations of flash transla-
tion layers (FTL) for database workloads. The main goal of FTL’s
is to minimize erase operations even for small random updates. The
pattern of random writes typically dealt with by a file system is
quite different from that of database workload. Specifically, in a
file system, most random writes are required for meta-data such
as FAT (file allocation table) and I-node map, and the writes are
scattered over only a very limited address space (typically less than
several megabytes) [18]. Therefore, this type of random writes can
be efficiently handled by the LSF-like techniques adopted by most
FTL’s. In contrast, the write patterns typical in database workloads
are scattered randomly over a large address space (usually more
than several gigabytes). Consequently, most existing FTL’s are not
well suited for processing database workload.

Table 6 summarizes the representatives of the previous work re-
lated to the in-page logging approach proposed in this paper. This
table classifies database storage techniques with respect to the data
update policy (i.e., in-place vs. no in-place) and the data access
latency (i.e., with or without mechanical latency).

7. CONCLUSIONS
The evidence that high-density flash memory can replace mag-

netic disks for a wide spectrum of computing platforms is clear and
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In-place update No in-place update

Mechanical Traditional DB Postgres Storage [25]
Latency Storage and recovery [10, 20] (Disk)

(Disk)
No mechanical PicoDBMS [3] In-page logging

latency (EEPROM) (Flash Memory)

Table 6: Classification of Database Storage Techniques

present. While multimedia applications tend to access large audio
or video files sequentially, database applications tend to read and
write data in small pieces in the scattered and random fashion. Due
to the erase-before-write limitation of flash memory, the traditional
database servers designed for disk-based storage systems will suf-
fer seriously deteriorated write performance.

To the best of our knowledge, it is the first time we expose
the opportunities and challenges posed by flash memory for the
unique workload characteristics of database applications, by run-
ning a commercial database server on a flash-based storage system.
The in-page logging (IPL) proposed in this paper has demonstrated
its potential for considerable improvement of write performance
for OLTP-type applications by exploiting the advantages of flash
memory such as no mechanical latency and high read bandwidth.
Besides, the IPL design can be extended to realize a lean recovery
mechanism for transactions.
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