
Dynamic In-Page Logging for Flash-Aware B-Tree Index∗

Gap-Joo Na
School of Info & Comm Engr
Sungkyunkwan University,

Suwon 440-746, Korea
factory@skku.edu

Sang-Won Lee
School of Info & Comm Engr
Sungkyunkwan University,

Suwon 440-746, Korea
wonlee@ece.skku.ac.kr

Bongki Moon
Dept. of Computer Science

University of Arizona
Tucson, AZ 85721, U.S.A.

bkmoon@cs.arizona.edu

ABSTRACT
This paper presents Dynamic IPL B+-tree (d-IPL in short)
as a B+-tree index variant for flash-based storage systems.
The d-IPL B+-tree adopts a dynamic In-Page Logging (IPL)
scheme in order to address a few new problems that are
caused by the unique characteristics of B+-tree indexes. The
d-IPL B+-tree avoids the frequent log overflow problem by
allocating a log area in a flash block dynamically. It also
addresses elegantly the problem of page evaporation, im-
posed by the contemporary NAND flash chips, by intro-
ducing ghost nodes within the context of the dynamic IPL
scheme. This simple but elegant design of the d-IPL B+-
tree improves the performance significantly. For a random
insertion workload, the d-IPL B+-tree index outperformed
a B+-tree with a plain IPL scheme by more than a factor of
two in terms of page write and block erase operations.

Categories and Subject Descriptors: H.2.4 [Database
Management]: System

General Terms: Design, Performance, Experimentation

1. INTRODUCTION
Due to its superiority in access latency, energy consump-

tion and the two-fold annual increase in its density, flash
memory storage devices (e.g., flash memory SSD) are being
adopted by storage and database vendors for large-scale en-
terprise servers. Recently, a new flash-based database stor-
age model called in-page logging (IPL) [2] was proposed to
optimize the write performance for database tables and in-
dexes where small random writes are dominant. The key
idea of the IPL scheme is to co-locate data pages and their
associated log records in the same flash block such that the
amount of physical writes is minimized at the nominal over-

∗
This work was partly supported by MKE, Korea under ITRC IITA-

2009-(C1090-0902-0046) and the Korea Research Foundation Grant
funded by the Korean Government (KRF-2008-0641). This work was
also sponsored in part by the U.S. National Science Foundation Grant
IIS-0848503. The authors assume all responsibility for the contents
of the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

head of read operations. By writing physiological log records
into the same block containing the corresponding data pages
without updating the data pages themselves in place, the
IPL scheme can effectively overcome the erase-before-update
limitation of flash memory. Unlike database tables, however,
B+-tree indexes are hierarchical and their structures change
over time by the node splitting operations, which may prop-
agate changes from one node to another. The node splitting
operation is difficult for the IPL scheme to deal with using
physiological log records, because it involves more than one
tree nodes that may be stored separately in different blocks.
This will lead to serious concerns we call frequent log over-
flow and page evaporation problems.

In this paper, we present Dynamic IPL B+-tree (d-IPL in
short) as a variant of the IPL scheme tailored for B+-tree
indexes so that the frequent log overflow and page evapo-
ration problems can be addressed. The d-IPL B+-tree im-
proves the utilization of flash blocks by allocating a log area
within a flash block dynamically. Furthermore, the d-IPL
B+-tree co-locates a new node in the same flash block as
the old node from which the new node is split, so that the
structural change caused by a node splitting operation can
be represented by a few physiological log records in the same
log area.

This simple but elegant design of the B+-tree variant im-
proves the performance significantly. For a random insertion
workload, the d-IPL B+-tree index outperformed a B+-tree
with a plain IPL scheme by more than a factor of two in
terms of page write and block erase operations. It also out-
performed a conventional B+-tree running on an existing
flash transaction layer (FTL) by up to an order of magni-
tude.

The key contributions of this work are summarized as fol-
lows. First, we discover the problem of frequent log overflows
caused by node splitting in a B+-tree under the IPL scheme.
Second, in order to overcome the problem, we extend the
IPL scheme such that log areas are dynamically allocated,
two splitting nodes are co-located in the same flash block,
and the node splits can be represented in succinct physio-
logical log records. Third, as a way of addressing the page
evaporation problem imposed by the contemporary NAND
flash chips, we introduce the concept of ghost nodes within
the context of the dynamic IPL scheme.

2. PROBLEM DEFINITION
The In-Page Logging (IPL) scheme takes advantage of the

idea of write-reduction-by-logging and the uniform access
speed of flash memory to improve the I/O performance of

1485

flash memory based database systems [2]. The IPL scheme
attempts to address the limitation of flash memory such
as high write latency by co-locating log records and their
corresponding data pages in the same flash block, so that
the frequency of flash write operations can be reduced dras-
tically at the nominally increased cost of read operations.
Unlike conventional sequential logging approaches (e.g., log-
structured file system[5]), log records can be written to the
same flash block as the corresponding data pages without
causing high latency from random writes, because the write
speed of flash memory is uniform regardless of the physical
location of a write operation.

Unlike database tables, however, B+-tree indexes change
their structures over time by the node splitting operations,
which may propagate changes from one node to other nodes.
The node splitting operation is difficult for the IPL scheme
to deal with using physiological log records, because it in-
volves more than one tree nodes that can be stored sepa-
rately in different blocks.

A. Frequent Log Overflows
Under the IPL scheme, when a data block runs out of free

log sectors, the new version of the data block is computed by
applying the log records to the current pages in the block,
and the new version is written to a free flash block. This
operation, known as block merge in IPL scheme(we call this
block cleansing in d-IPL B+-tree), is costly because it in-
volves copying an old block to a new one and erasing the
old block. However, the node split operations of a B+-tree
may consume log sectors quickly, which leads to frequent
invocation of block merge operations. We call this problem
a frequent log overflow.

For example, when a tree node B is split from an existing
node A, it may suffice to produce a few log records to de-
scribe this operation physiologically. Since the IPL scheme
requires that data pages be associated with their own log
sectors separately from each other, the node A needs a log
record that denotes removal of half of its entries and the node
B needs a log record that denotes insertion of the other half
of A’s entries. Although the IPL scheme requires that data
pages and their log sectors are co-located in the same flash
block, it is not guaranteed that the nodes A and B will be
stored in the same flash block. Therefore, if the nodes A
and B are written to two different blocks, then these blocks
become subject to subsequent block merge operations inde-
pendently from each other. If the block containing the node
A is merged, then the log records of A will not be available
to the node B any longer. This makes it impossible to com-
pute the new version of node B. One way of avoiding this
problem is to store “physical” log records – one for each en-
try in a tree node – instead of physiological log records when
a tree node is split. Consequently, each node split operation
will produce as many log records as the number of entries
stored in a tree node, which will in turn consume log sectors
in the blocks very quickly.

B. Page Evaporation
Recently, as the capacity of flash memory chips grows,

most flash memory manufacturers have imposed a new re-
striction that pages in a flash block should be written in a
sequential order [6]. Under the original IPL scheme, a fixed
size of log area is allocated in a preset portion of a flash block
– typically in highly addressed consecutive sectors. Conse-

quently, if a page in a non-full block is updated, a new log
sector will be written into the log area of the block, which
may leave a region of free pages in the middle of the block
that can never be written into because of the sequential page
write requirement. We call this a page evaporation problem.

3. THE DYNAMIC IPL B+-tree INDEX

3.1 Structure of the Index
Unlike magnetic disk drives, flash memory have two units

of operations, namely, a page for read/write and a block for
erase operations. As a flash-aware indexing structure, the
d-IPL B+-tree incorporates both the notions of nodes and
blocks in its design of hierarchical structure.

The node-level structure of a d-IPL B+-tree is exactly the
same as that of a conventional B+-tree [4], except for fol-
lowing definition.

(N.a) The new node split from an existing one is first created
as a form of ghost node and embodied later to a reg-
ular node by either a block split or a block cleansing
operation.

A ghost node defined above is essentially a group of phys-
iological log records stored in a log area rather than a reg-
ular node stored physically in consecutive pages. The ghost
nodes will be explained further in Section 3.2.

In addition to the node-level structure, the d-IPL B+-tree
has a hierarchical block-level structure defined as follows

(B.a) A flash block consists of a data area and a log area.
The data area stores regular nodes, while the log area
stores the physiological log records of the regular nodes
that have been updated. The ghost nodes are also
represented as physiological log records stored in the
log area.

(B.b) The d-IPL B+-tree has only one block containing the
root node. Each non-root block stores a group of non-
root sibling nodes (either regular or ghost) residing at
a consecutive location of the same level of the d-IPL
B+-tree.

(B.c) A minimum occupancy of 50% is guaranteed for each
block except for the root block and the child blocks of
the root block.

(B.d) When a new node is split from an existing one, the new
node is always created in the same block where the
existing node is stored. If a block runs out of space for
a new node, the block is split such that the requirement
(B.b) is satisfied.

Following the IPL scheme, the nodes of a d-IPL B+-tree
index are co-located with their log records in the same flash
block. Besides, the size of a log area is determined dynam-
ically, because the log area is created right after the tree
nodes stored in a flash block and the number of tree nodes
stored in a flash block can change over time by block split
or block cleansing operations.

Not only the root block but also the child blocks of the
root block are an exception of the guaranteed occupancy of
blocks (described in (B.c)). This is because the root node is
allowed to have a fewer child nodes than the other non-root
nodes and the number of child nodes is not enough to fill up
the child blocks of the root block. When a block overflows

1486

Node

Node Data: 8KB In Page Log Sector: 512Byte

Log Area
(8KB~64KB)

16~128 sectors

Data Area
(7~15

Node data)

NAND Flash Memory

1 Flash
Block (128KB)

In-Memory Copy of B+-Tree Node

Up-to-date
nodeRead Operation

Write Operation

NandFlash Block
(max node : 15)

B+-Tree Node

…

……

…

…

…

…

Figure 1: Structure of the d-IPL B+-tree Index

with too many tree nodes, the block is split into two blocks,
each with half of the nodes.

Figure 1 shows an example d-IPL B+-tree index struc-
ture. As illustrated in the upper half, d-IPL B+-tree has
a hierarchical node structure like a conventional B+-tree,
and each node is stored in a flash block denoted by dotted
boxes. The lower half shows an example of flash blocks and
the relationships between a block and its member nodes.

3.2 Dynamic Log Area & Ghost Node
The log area of a flash block stores log records, and the size

of a log area can vary depending on the number of regular
nodes stored in the data area, the size of which is in turn de-
termined by block split or block cleansing operations. When
a block is split, each of the two split blocks is assigned the
same number of tree nodes. Consequently, the storage space
in each of the blocks is evenly divided into a data area and a
log area of the same size. On the other hand, when a block
is cleansed, the number of regular nodes stored in the block
can increase by embodying ghost nodes and the size of the
log area can shrink. The size of a log area can be as small
as a single tree node (typically, 8 KBytes).

By having a new node split from an existing node stored
in the same block as the existing one, the node splitting
operation can be represented by a few short physiological
log records instead of a large number of physical log records.
This allows us to effectively avoid the problem of frequent
log overflows in flash blocks. Besides, by allocating a log area
dynamically right next to the data area within a flash block,
we can always write into a flash block sequentially from top
to bottom without violating the sequential write restriction
and thus can avoid the page evaporation problem. Thus, the
dynamic log area is fully utilized to absorb as many writes
as possible for the nodes in a block, and delay the block
cleansing operations until the entire log area is consumed.

When a node is split from an existing node, the new node
is stored in the same block where the existing node is stored.
However, the new node is not created as a regular node, but
instead stored as a physiological log record in the log area
of the block. Since the new node does not exist in the form
of a regular node until it becomes embodied, we call it a
ghost node. The novelty of our approach lies in the fact that
both updates in nodes and newly split ghost nodes can be
represented by log records.

3.3 Log Write Policy
Since the d-IPL B+-tree adopts the in-page logging strat-

egy, the log records collected in the in-memory log sectors
attached to the tree nodes cached in memory are written to
flash memory following the write rules below.

Rule 1 When a dirty buffer frame is evicted by a buffer
replacement mechanism, the corresponding log sector
is written to a log area in the corresponding flash block.

Rule 2 When an in-memory log sector becomes full, the log
sector is written to a log area

The first rule follows the traditional disk-based buffer re-
placement mechanism except that only the log records are
written to a log area without writing the buffer frame itself.
The second rule is related to the fact that the IPL scheme
assigns a fixed size in-memory log sector to each dirty page.
A full in-memory log sector needs to be flushed to flash mem-
ory so that further updates on the buffer frame can be logged
in a clean in-memory log sector.

Additional care should be taken for the d-IPL B+-tree,
because node splitting operations should also be recorded
as a log record. When a node is split into two nodes, each
of the two nodes will eventually need to write a log sec-
tor into a flash block. As required by the IPL scheme, a
tree node and its log sectors must be co-located in the same
block. Furthermore, the d-IPL B+-tree requires that the two
nodes split from the old one must reside in the same block.
Consequently, the log sectors produced by a node splitting
operation must be written to the same flash block. Hence,
an additional write rule about writing log sectors is needed.

Rule 3 The log sectors involved in a node splitting opera-
tion should be written to the same log area.

4. PERFORMANCE EVALUATION
In order to evaluate the performance of d-IPL B+-tree,

we perform the insertion experiment and the search experi-
ment on four different types of B+-tree indexes: conventional
B+-tree running on the top of either of two different FTLs,
the IPL B+-tree, and d-IPL B+-tree. The two FTLs we
use in this evaluation are FMAX [1] and FAST [3]. FMAX
and FAST use a block-level address mapping. They avoid
erase operations for out-of-place updates by using replace-
ment blocks, which can accommodate page updates instead
of updating them in-place. With a much smaller number of
log blocks, FAST is known to achieve good random write
performance by adopting a fully associative mapping be-
tween data blocks and log blocks.

In all the experiments, the node size is set as 8KB, and
we assume the maximum entries in internal nodes is 840 and
the maximum number of records allowed leaf nodes is 510.
The record in leaf nodes is a pair of key and value, and the
key length is 4 bytes and the length of value is 12 bytes.
The key is an integer number between 1 and 1,000,000, and
the total n record set is 1,000,000. For the insertion exper-
iment, we insert one million index entries into each index
in fully random order, and, for each approach, we run the
same experiment by increasing the buffer frames in RAM
from 100 to 500 by 100 frames. For the search experiment,
we search the index built in the insertion experiment using
the one million random key values. Also, we run the same
experiment by increasing the buffer frames in RAM from
100 to 500 by 100 frames.

1487

20

40

60

80

100

100 200 300 400 500

N
u

m
b

e
r

o
f

P
a

g
e

s
 (

X
 1

0
0

,0
0

0
)

Number of Buffer Frames

FAST
FMAX

IPL
d-IPL

(a) Number of Read Operation

20

40

60

80

100

100 200 300 400 500

N
u

m
b

e
r

o
f

P
a

g
e

s
 (

X
 1

,0
0

0
,0

0
0

)

Number of Buffer Frames

FAST
FMAX

IPL
d-IPL

(b) Number of Write Operation

10

20

30

100 200 300 400 500

N
u

m
b

e
r

o
f

B
lo

c
k
s
 (

X
 1

0
,0

0
0

)

Number of Buffer Frames

FAST
FAMX

IPL
d-IPL

(c) Number of Erase Operation

Figure 2: Performance of Random Insertions

4.1 Insertion Performance
The insertion operation in d-IPL B+-tree might involve

the read/write/erase operations in flash memory. In order
to find the target node for an entry insertion, we need to
traverse down the d-IPL B+-tree from the root to the leaf
node, and during the traversal, several regular nodes and
their relevant log pages should be brought into memory from
flash memory. For an insertion to complete, we need to
flush the log records in the log area. In some cases, we
need to cleanse old blocks and/or split blocks, which involves
additional read/write/erase operations.

Figure 2 shows the number of pages to be read, the num-
ber of pages to be written, and the number of block erases
when one million index entries are randomly inserted in four
cases: that is, two cases of disk-based B+-tree indexes upon
FTL (denoted FAST and FMAX), IPL B+-tree, and d-IPL
B+-tree. As is seen in Figure 2, both the d-IPL B+-tree
index and the IPL scheme outperform the FTL approaches
considerably. This result makes us confirm that the exist-
ing FTL approaches, even though they are equipped with
considerable amount of log blocks, would underperform the
IPL-based approaches against small random writes. The
IPL scheme can effectively overcome the erase-before-update
limitations of flash memory by minimizing the amount of
physical writes in the form of physiological log. Meanwhile,
the d-IPL B+-tree index outperforms the IPL scheme at least
by more than two factors, which shows that the dynamic in-
page logging scheme is very effective in solving the problems
of frequent overflow log and page evaporation.

One interesting point in Figure 2.(a) is that the IPL-based
approaches are better than the FTL approaches even in the
number of page reads. At first, we expected that the IPL-
based approaches would have more page reads than the FTL
approaches. But, we soon come to know that the frequent
block erases in FTL approaches would bring many page
reads together and this is why the FTL approaches have
more page reads than IPL-based approaches.

4.2 Search Performance
The search performance of the d-IPL B+-tree index and

the IPL scheme (with the legends of IPL and d-IPL) is
poorer than that FTL approaches almost by 50% and by
100%, respectively. This result is very consistent with our
prediction. In the IPL scheme, the size of log area is static
so that only one more access to log area of 8K bytes is nec-
essary when the node being accessed has the relevant log

sector in log area. In the d-IPL B+-tree scheme, we need
to retrieve more log sectors from dynamic log area than
the IPL scheme. Compared to the IPL scheme as well as
the FTL approaches, we believe that this overhead in d-
IPL B+-tree’s searches be marginal against its reduction in
write/erase operations Furthermore, the overhead of the d-
IPL B+-tree read operations can be avoided altogether at a
nominal cost of block cleansing. Suppose, for example, the
workload changes from write-intensive to read-intensive. If
this change in trend is detected, the block cleaning opera-
tion can be applied globally to all flash blocks. Once this is
completed, only regular nodes will be accessed from cleansed
flash blocks without any log records. From our search exper-
iment, we affirmed that the read performance of eager block
cleansing even outperform that of FTL approaches slightly.

5. CONCLUSION
Unlike database tables, B+-tree indexes are hierarchical

and their structures change over time by the node splitting
operations, which may propagate changes from one node to
other nodes. The node splitting operation is difficult for the
basic IPL scheme to deal with using physiological log records
and lead to serious concerns called frequent log overflow and
page evaporation problems. To overcome these problems,
we proposed a dynamic IPL scheme for flash-based B+-tree
index and we empirically showed that the d-IPL B+-tree
index improves the utilization of flash blocks by dynamically
allocating a log segment within each flash block, and it can
also minimize log overflows by reducing the number of log
records by node splitting operations.

6. REFERENCES
[1] A. Ban. Flash File System Optimized for Page-Mode Flash

Technologies. U.S Patent No. 5,937,425, 1999.

[2] S.-W. Lee and B. Moon. Design of flash-based dbms: An in-page
logging approach. In Proceedings of the ACM SIGMOD, pages
55–66, Jun 2007.

[3] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and
H.-J. Song. A Log Buffer Based Flash Translation Layer using
Fully Associative Sector Translation. ACM Transactions on
Embedded Computing Systems, 6(3), July 2007.

[4] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw Hill, 2003. (3rd ed).

[5] M. Rosenblum and J. K. Ousterhout. The Design and
Implementation of a Log-Structured File System. In SOSP,
pages 1–15, Pacific Grove, CA, Sept. 1991.

[6] Samsung Electronics. NAND Flash Memory Data Sheets.
Application note.

1488

